

Open Game Engine Exchange

Specification

Version 1.1.2

by Eric Lengyel

Terathon Software LLC

Roseville, California

Open Game Engine Exchange Specification

Version 1.1.2

ISBN-13: 978-0-9858117-3-0

Copyright © 2015, by Eric Lengyel

Published by Terathon Software LLC

http://www.terathon.com/

Additional materials available on the OpenGEX website:

http://opengex.org/

 iii

Contents

Introduction .. 1

Structure Specification .. 7

Animation .. 9

Atten ... 12

BoneCountArray .. 15

BoneIndexArray ... 16

BoneNode .. 17

BoneRefArray .. 18

BoneWeightArray .. 19

CameraNode .. 20

CameraObject .. 22

Clip ... 23

Color .. 25

Extension ... 26

GeometryNode ... 28

GeometryObject ... 30

IndexArray ... 32

Key ... 34

LightNode .. 36

LightObject .. 38

Material .. 41

MaterialRef .. 43

iv OpenGEX Specification

Mesh ... 44

Metric ... 47

Morph ... 49

MorphWeight ... 51

Name .. 53

Node ... 54

ObjectRef .. 56

Param .. 57

Rotation .. 58

Scale ... 60

Skeleton .. 62

Skin ... 63

Texture .. 66

Time .. 68

Track ... 70

Transform ... 73

Translation .. 75

Value .. 77

VertexArray .. 79

OpenDDL Reference .. 83

Revision History.. 101

 1

1

Introduction

The Open Game Engine Exchange (OpenGEX) format is a text-based file format designed to facilitate

the transfer of complex scene data between applications such as modeling tools and game engines. The

OpenGEX format is built upon the data structure concepts defined by the Open Data Description

Language (OpenDDL), a generic language for the storage of arbitrary data in human-readable format.

This specification provides a description of the data structures defined by OpenGEX, and it includes an

OpenDDL reference in Appendix A.

At the most basic level, an OpenGEX file consists of a node hierarchy, a set of objects, a set of materials,

and some additional information about global units and axis orientation. The various node, object, and

material structures contain all of the details such as geometric data and animation tracks within a

hierarchy of additional types of structures defined by OpenGEX. The relationships among all of these

structures are shown in Figure 1.1.

Nodes

The node hierarchy represents the overall organization of the scene. An OpenGEX file may contain any

number of nodes at the root level, and each node may contain any number of child nodes. The nodes

form tree structures in which each node can have at most one parent node.

Each node in the hierarchy may have data structures containing transformations and animation tracks.

Nodes representing geometries, lights, and cameras in the scene have references to other structures

containing the geometric data and various parameters for those objects. Multiple nodes may reference

the same object to achieve instancing.

Geometry nodes may have one or more references to materials containing information about surface

shading. Materials may be referenced by any number of geometry nodes.

Objects

The data belonging to geometries, lights, and cameras without regard for placement in the overall scene

is stored in a flat set of object structures. An OpenDDL reference is used to make the connection

between each node in the scene and the object that it instances.

2 OpenGEX Specification

Figure 1.1. This diagram illustrates the relationships among the structures defined by the

OpenGEX format. The purple arrows point from each of the structures to the specific

substructures they are allowed to contain. (Substructures that are simply OpenDDL data types

have been omitted.) The circular orange nodes serve only to combine paths in order to simplify

the diagram where common relationships exist.

GeometryNodeLightNodeCameraNodeBoneNodeNode

Metric

Extension

Clip

ObjectRef MaterialRef

MorphWeight

Transform

Translation

Rotation

Scale

Animation

Track

Time Value

Key

Name

Material Texture

Color

ParamLightObject

CameraObject

GeometryObject

Atten

Mesh

Morph

VertexArray

IndexArray

Skin Skeleton

BoneRefArrayBoneCountArray BoneIndexArray BoneWeightArray

Introduction 3

Geometry objects contain a set of one or more mesh structures that each contain vertex and primitive

information as well as optional skinning data. Light objects contain information about a lightôs color,

intensity, and attenuation functions. Camera objects contain information about a cameraôs field of view

and clipping planes.

Materials

A material structure contains basic information about various colors and texture maps used by a surface

shader. Texture maps may include texture coordinate transformations and animation tracks that affect

those transformations.

Animation

Node transformations, morph weights, and texture coordinate transformations may all be animated

through the inclusion of Animation structures inside Node structures and Texture structures. A

complete transformation may be decomposed into multiple components, such as rotations about one or

more axes followed by a translation, and an animation may contain several tracks that animate each

component separately. An OpenGEX file may contain multiple animation clips, and each Animation

structure identifies which clip it belongs to. Information about a complete animation clip is stored inside

a Clip structure that can appear at the top level of the file.

Extensions

OpenGEX defines an Extension structure whose purpose is to allow the inclusion of application-

specific information anywhere that a writer sees fit. A writer may not define new structure types, but

each Extension structure has a type property that defines the meaning of the data it contains. This

enables complex custom data structures to be written to an OpenGEX file without breaking readers that

do not understand them because unrecognized Extension structures can simply be skipped.

Example

A very simple example of a complete OpenGEX file describing a green cube is shown in Listing 1.1.

It begins with a group of Metric structures that define the units of measurement and the global up

direction. Those are followed by a single GeometryNode structure that provides the name and

transform for the cube. The geometric data for the cube is stored in the GeometryObject structure

that is referenced by the geometry node. The geometry object structure contains a single mesh of

triangle primitives that includes per-vertex positions, normals, and texture coordinates. Finally, the

Material structure at the end of the file contains the green diffuse reflection color.

4 OpenGEX Specification

Listing 1.1. This is an example of a near-minimal OpenGEX file containing the data for a green cube. It

consists of a single geometry node that references a geometry object and a material.

Metric (key = "distance") { float {0.01}}

Metric (key = "angle") { float {1}}

Metric (key = "time") { float {1}}

Metric (key = "up") { string {"z"}}

GeometryNode $node1

{

 Name { string {"Cube"}}

 ObjectRef { ref {$geometry1}}

 MaterialRef { ref {$material1}}

 Transform

 {

 float [16]

 {

 {0x3F800000, 0x00000000, 0x00000000, 0x00000000, // {1, 0, 0, 0

 0x00000000, 0x3F800000, 0x00000000, 0x00000000, // 0, 1, 0, 0

 0x00000000, 0x00000000, 0x3F800000, 0x00000000, // 0, 0, 1, 0

 0x42480000, 0x42480000, 0x00000000, 0x3F800000} // 50, 50, 0, 1}

 }

 }

}

GeometryObject $geometry1 // Cube

{

 Mesh (primitive = "triangles")

 {

 VertexArray (attrib = "position")

 {

 float [3] // 24

 {

 {0xC2480000, 0xC2480000, 0x00000000}, {0xC2480000, 0x42480000, 0x00000000},

 {0x42480000, 0x42480000, 0x00000000}, {0x42480000, 0xC2480000, 0x00000000},

 {0xC2480000, 0xC2480000, 0x42C80000}, {0x42480000, 0xC2480000, 0x42C80000},

 {0x42480000, 0x42480000, 0x42C80000}, {0xC2480000, 0x42480000, 0x42C80000},

 {0xC2480000, 0xC2480000, 0x00000000}, {0x42480000, 0xC2480000, 0x00000000},

 {0x42480000, 0 xC2480000, 0x42C80000}, {0xC2480000, 0xC2480000, 0x42C80000},

 {0x42480000, 0xC2480000, 0x00000000}, {0x42480000, 0x42480000, 0x00000000},

 {0x42480000, 0x42480000, 0x42C80000}, {0x42480000, 0xC2480000, 0x42C80000},

 {0x42480000, 0x42480000, 0x000 00000}, {0xC2480000, 0x42480000, 0x00000000},

 {0xC2480000, 0x42480000, 0x42C80000}, {0x42480000, 0x42480000, 0x42C80000},

 {0xC2480000, 0x42480000, 0x00000000}, {0xC2480000, 0xC2480000, 0x00000000},

 {0xC2480000, 0xC2480000, 0x42C80000}, {0xC2480 000, 0x42480000, 0x42C80000}

 }

 }

 VertexArray (attrib = "normal")

 {

 float [3] // 24

 {

 {0x00000000, 0x00000000, 0xBF800000}, {0x00000000, 0x00000000, 0xBF800000},

 {0x00000000, 0x00000000, 0xBF800000}, {0x00000000, 0x00000000, 0xBF800000},

 {0x00000000, 0x00000000, 0x3F800000}, {0x00000000, 0x00000000, 0x3F800000},

 {0x00000000, 0x00000000, 0x3F800000}, {0x00000000, 0x00000000, 0x3F800000},

 {0x00000000, 0xBF800000, 0x00000000}, {0x00000000, 0xBF800000, 0x00000000},

 {0x00000000, 0xBF800000, 0x00000000}, {0x80000000, 0xBF800000, 0x00000000},

 {0x3F800000, 0x00000000, 0x00000000}, {0x3F800000, 0x00000000, 0x00000000},

 {0x3F800000, 0x00000000, 0x00000000}, {0x3F800000, 0x00000000, 0x00000000},

 {0x00000000, 0x 3F800000, 0x00000000}, {0x00000000, 0x3F800000, 0x00000000},

 {0x00000000, 0x3F800000, 0x00000000}, {0x80000000, 0x3F800000, 0x00000000},

 {0xBF800000, 0x00000000, 0x00000000}, {0xBF800000, 0x00000000, 0x00000000},

 {0xBF800000, 0x00000000, 0x00000000}, {0xBF800000, 0x00000000, 0x00000000}

 }

 }

Introduction 5

 VertexArray (attrib = "texcoord")

 {

 float [2] // 24

 {

 {0x3F800000, 0x00000000}, {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000},

 {0x00000000, 0x00000000}, {0x00000000, 0x000 00000}, {0x3F800000, 0x00000000},

 {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000}, {0x00000000, 0x00000000},

 {0x3F800000, 0x00000000}, {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000},

 {0x00000000, 0x00000000}, {0x3F800000, 0x00000000}, {0 x3F800000, 0x3F800000},

 {0x00000000, 0x3F800000}, {0x00000000, 0x00000000}, {0x3F800000, 0x00000000},

 {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000}, {0x00000000, 0x00000000},

 {0x3F800000, 0x00000000}, {0x3F800000, 0x3F800000}, {0x00000000, 0x3F800000}

 }

 }

 IndexArray

 {

 unsigned_int32 [3] // 12

 {

 {0, 1, 2}, {2, 3, 0}, {4, 5, 6}, {6, 7, 4}, {8, 9, 10},

 {10, 11, 8}, {12, 13, 1 4}, {14, 15, 12}, {16, 17, 18},

 {18, 19, 16}, {20, 21, 22}, {22, 23, 20}

 }

 }

 }

}

Mate rial $material1

{

 Name { string {"Green"}}

 Color (attrib = "diffuse") { float [3] {{0, 1, 0}}}

}

 7

2

Structure Specification

This section provides a detailed specification for each of the 39 data structures defined by OpenGEX.

The structures appear in alphabetical order without regard for the possible hierarchical relationships or

the order in which they are likely to appear in an OpenGEX file.

The description of each data structure includes tables that list the properties that are accepted, the types

of data structures that may appear as substructures, and the possible containing structures. The meaning

of the information provided in these tables is discussed below.

Properties

If a structure accepts any property values, then they are listed in a table with a blue heading, as shown

in the example below. The name of each property is listed in the first column, and its OpenDDL data

type is listed in the second column. The default value used when a particular property is not specified

is listed in the third column. Some properties do not have default values, and this means that either the

property is required or there is some specified behavior that should be followed when the property is

not present. Many properties have a small set of possible values, and in such a case, a description of

each particular value is provided where necessary.

Property Type Default Description

example int32 0 A description of the property value.

Structure Data

The types of substructures composing the data payload for a particular OpenGEX structure are listed

in a table with a green heading, as shown in the example below. The allowed substructures may include

other OpenGEX structures, native OpenDDL data types, or both. Except where noted otherwise, the

order in which substructures appear is not significant. The name of each possible substructure is listed

in the first column. The second and third columns indicate the minimum and maximum number of times

that each substructure may occur within the structure. A dash in the third column indicates that there is

no maximum number.

8 OpenGEX Specification

Substructure Min Max Description

example 0 1 A description of the relationship to the substructure.

Hierarchy

The types of structures that may hierarchically contain a particular OpenGEX structure are listed in a

table with an orange heading, as shown in the example below. The allowed containing structures listed

in the first column are always OpenGEX structures. For structures that are allowed to exist at the root

level of the file, there is an entry for which a dash is listed in the first column.

Containing Structure Description

example A description of the relationship to the containing structure.

File Names

Where file names are specified inside a structureôs data (currently possible only inside the Texture

structure), they shall be formatted according to the following rules.

Å A file name consists of a sequence of zero or more directory names followed by the name of the file

and an optional extension.

Å The delimiter between directory names and between the last directory name and the file name must

always be a single forward slash character having ASCII value 47.

Å A file name representing an absolute path begins with a forward slash character, and a file name

representing a relative path does not. In the case of a relative path, a file name specifies a path relative

to the directory containing the OpenGEX file being processed.

Å If a file name begins with two consecutive forward slash characters, then the first directory name

following the two slashes should be interpreted as a volume name or drive letter, as appropriate for

the operating system.

Å A file name shall not contain any of the characters \ :*? " <>| having ASCII values 92, 58, 42, 63,

34, 60, 62, and 124, respectively.

Animation 9

Animation

The Animation structure contains animation data for a single node in the scene. Each animation

structure is directly contained inside a node structure (Node, BoneNode, GeometryNode ,

CameraNode, or LightNode) or Texture structure, and it contains the data needed to modify its

sibling transform structures (Transform , Translation , Rotation , and Scale) or sibling

Morph Weight structures over time.

Tracks

An Animation structure contains one or more Track structures, and each track contains the data

needed to modify the data contained in one structure, the trackôs target. A track identifies its target by

specifying the local OpenDDL name of a structure contained inside the same node structure that

contains the Animation structure. In Listing 2.1, the Tran slation structure named %xpos is

targeted by the animation track, and this track contains five keys that define the value that the translation

should attain at five points in time. In this case, the animation causes the geometry to move four units

of distance in the positive x direction for each unit of time.

Listing 2.1. The animation track in this example modifies the data inside the Translation structure

having the local OpenDDL name %xpos.

GeometryNode

{

 Translation %xpos (kind = "x")

 {

 float {0.0}

 }

 Animation

 {

 Track (target = %xpos)

 {

 Time

 {

 Key { float {0.0, 0.5, 1.0, 1.5, 2.0}}

 }

 Value

 {

 Key { float {0.0, 2.0, 4.0, 6.0, 8.0}}

 }

 }

 }

}

10 OpenGEX Specification

A track always contains a Time structure and a Value structure, and the data points contained inside

those structures can be interpolated in a variety of ways. See the Track structure for information about

the different types of key value interpolation.

Properties

The properties listed in the following table may be specified for an Animation structure.

Property Type Default Description

clip unsigned_ int32 0 The clip index for the animation.

begin float The time at which the animation begins.

end float The time at which the animation ends.

The clip property specifies the animation clip index. The set of all Animation structures in an

OpenGEX file having the same clip index constitute one complete animation clip for the entire scene.

If a structure contains any animation at all, then it is not a requirement that the same structure contains

an animation corresponding to each clip index present somewhere in the file. Information pertaining to

the animation clip as a whole can be stored in a Clip structure.

The begin and end properties specify the times at which the animation begins and ends. The values

of these properties are multiplied by the global time metric to obtain times measured in seconds. (See

the Metric structure.) If either property is not specified, then the begin and/or end time for the

animation is determined by the earliest and latest time values present in the Track structures belonging

to the animation. An animation track may include key times that lie outside the interval specified by

the begin and end properties, and the corresponding keys could still be used to calculate interpolated

values inside the animationôs time range.

A structure may contain multiple Animation structures belonging to the same animation clip (that is,

with the same value for the clip property). However, each track belonging to the set of Animation

structures having the same clip index must have a unique target structure, as given by the target

property of the Track structure, among all tracks belonging to all animations in the set.

Structure Data

The following structures may compose the data stored inside an Animation structure.

Substructure Min Max Description

Track 1 An Animation structure must contain one or more tracks

that each hold animation keys for a single target.

Animation 11

Hierarchy

An Animation structure may be contained inside the following structures.

Containing Structure Description

Node

BoneNode

GeometryNode

CameraNode

LightNode

Animation structures can be contained inside any node structure.

Texture Animation structures can be contained inside a Texture

structure.

12 OpenGEX Specification

Atten

The Atten structure specifies an attenuation function for a light object. A light source may have

multiple attenuation functions applied to it, and the values produced by all of them are multiplied

together to determine the intensity of light reaching any particular point in space.

Properties

The properties listed in the following table may be specified for an Atten structure.

Property Type Default Description

kind string " distance " The kind of attenuation.

curve string " linear " The function defining the attenuation curve.

The kind property specifies the input to the attenuation function and must have one of the following

values.

Å A value of "distance" indicates that the input to the attenuation function is the radial distance

from the light source.

Å A value of " angle " indicates that the input to the attenuation function is the angle formed between

the negative z axis and the direction to the point being illuminated in object space.

Å A value of " cos_angle " indicates that the input to the attenuation function is the cosine of the

angle formed between the negative z axis and the direction to the point being illuminated in object

space.

The curve property determines the general formula for the attenuation function and must have one of

the following values.

Å A value of "linear" indicates that the attenuation is given by the linear function

 ()linear sat
e t

a t
e b

-å õ
= æ ö

-ç ÷
,

 where b is the input value at which the attenuation begins, and e is the input value at which the

attenuation ends. The beginning and ending values are specified by parameters as described below.

The default beginning value is 0.0, and the default ending value is 1.0.

Å A value of "smooth" indicates that the attenuation is given by the cubic smooth-step function

 () ()() ()()
2 3

smooth linear linear3 2a t a t a t= - ,

 which is dependent on the same beginning and ending input values b and e as the linear attenuation

function.

Atten 13

Å A value of "inverse" indicates that the attenuation is given by the inverse function

 ()inverse sat
l c

s
a t o

k t k s

å õ
= +æ ö

+ç ÷
,

 where s and o are scale and offset values specified by parameters as described below. The default

scale value is 1.0, and the default offset value is 0.0. The linear coefficient lk and constant coefficient

ck are also specified by parameters, and they have the default values 1.0 and 0.0, respectively.

Å A value of "inverse_square" indicates that the attenuation is given by the inverse square

function

 ()
2

inverse_square 2 2
sat

q l c

s
a t o

k t k st k s

å õ
= +æ ö

+ +ç ÷
,

 where s and o are scale and offset values specified by parameters as described below. The default

scale value is 1.0, and the default offset value is 0.0. The quadratic coefficient qk , linear coefficient

lk , and constant coefficient ck are also specified by parameters, and they have the default values 1.0,

0.0, and 0.0, respectively. (Note that the default value of lk is different for the inverse and inverse

square attenuation functions.)

Structure Data

The following structures may compose the data stored inside an Atten structure.

Substructure Min Max Description

Param 0 An Atten structure may contain parameters.

For each Param substructure that is present, the value of its attrib property determines the meaning

of the parameter data. The following parameter attrib values are defined by this specification for

use with an attenuation function.

Å A value of " begin " or " end" indicates that the parameter is the distance from the light source at

which the attenuation function begins or ends. These are multiplied by the global distance metric to

obtain values measured in meters. (See the Metric structure.) These parameter values apply only

if the curve property has a value of "linear" or "smooth" .

Å A value of " scale " indicates that the parameter is a scale to be used with inverse distance

attenuation functions. This is multiplied by the global distance metric to obtain a value measured in

meters. (See the Metric structure.) This parameter applies only if the curve property has a value

of "inverse" or "inverse_square" .

Å A value of " offset " indicates that the parameter is an offset to be used with inverse distance

attenuation functions. This parameter applies only if the curve property has a value of "inverse"

or "inverse_square" . (Note that the offset is not multiplied by the global distance metric.)

14 OpenGEX Specification

Å A value of "constant" , "linear" , or "quadratic" indicates that the parameter is the

coefficient ck , lk , or qk , respectively, used with inverse distance attenuation functions. The ck and lk

parameters apply only if the curve property has a value of "inverse" or "inverse_square" ,

and the qk parameter applies only if the curve property has a value of " inverse_square" .

Å A value of " power " indicates that the parameter is a power to be used with angular attenuation

functions. This parameter applies only if the kind property of the Atten structure has a value of

" angle " or " cos_angle " . The result produced by the attenuation function should be raised to

the value of the power parameter.

A writer may include Param substructures with application-defined attrib values. If a reader

encounters any of these for which the attrib value is either unsupported or unrecognized, then the

substructure should be ignored.

Hierarchy

An Atten structure may be contained inside the following structures.

Containing Structure Description

LightObject Atten structures can be contained inside a LightObject

structure.

BoneCountArray 15

BoneCountArray

The BoneCountArray structure contains bone count data for a skinned mesh. For each vertex

belonging to a mesh, the bone count array specifies the number of bones the influence the vertex. See

the Skin structure for details about skinning calculations.

Structure Data

The following structures may compose the data stored inside a BoneCountArray structure.

Substructure Min Max Description

unsigned_ int8

unsigned_ int16

unsigned_ int32

unsigned_ int64

1 1 A BoneCountArray structure must contain an

array of per-vertex bone counts.

The size of the bone count array must match the number of vertices specified in the containing meshôs

VertexArray structures.

Hierarchy

A BoneCountArray structure may be contained inside the following structures.

Containing Structure Description

Skin A single BoneCountArray structure can be contained inside a

Skin structure.

16 OpenGEX Specification

BoneIndexArray

The BoneIndexArray structure contains bone index data for a skinned mesh. For each vertex

belonging to a mesh, the bone index array contains n entries, where n is the number of bones influencing

the vertex. See the Skin structure for details about skinning calculations.

Structure Data

The following structures may compose the data stored inside a BoneIndexArray structure.

Substructure Min Max Description

unsigned_ int8

unsigned_ int16

unsigned_ int32

unsigned_ int64

1 1 A BoneIndexArray structure must contain an

array of bone indexes.

The total number of entries in a bone index array is equal to the sum of the counts specified in the

BoneCountArray structure for the same skin.

Hierarchy

A BoneIndexArray structure may be contained inside the following structures.

Containing Structure Description

Skin A single BoneIndexArray structure can be contained inside a

Skin structure.

BoneNode 17

BoneNode

The BoneNode structure represents a single bone node in the scene. Because it is a specific type of

node, it possesses all of the characteristics of a generic node, such as an optional name, transform, and

animation. See the Node structure for more information.

The collection of bone nodes forming the complete skeleton for a skinned mesh is referenced by a

BoneRefArray structure contained inside a Skeleton structure.

Structure Data

The following structures may compose the data stored inside a BoneNode structure.

Substructure Min Max Description

Name 0 1 A BoneNode structure may have a name.

Transform

Translation

Rotation

Scale

0 A BoneNode structure may have any number of

transformations applied to it.

Animation 0 A BoneNode structure may contain animation.

Node

BoneNode

GeometryNode

CameraNode

LightNode

0 A BoneNode structure may have any number of

subnodes.

Hierarchy

A BoneNode structure may be contained inside the following structures.

Containing Structure Description

 BoneNode structures can be top-level structures.

Node

BoneNode

GeometryNode

CameraNode

LightNode

BoneNode structures can be contained inside any other node

structure.

18 OpenGEX Specification

BoneRefArray

The BoneRefArray structure contains the list of bone nodes belonging to a skeleton. See the

Skeleton structure for more information.

Structure Data

The following structures may compose the data stored inside a BoneRefArray structure.

Substructure Min Max Description

ref 1 1 A BoneRefArray structure must contain an array of

references to BoneNode structures.

Hierarchy

A BoneRefArray structure may be contained inside the following structures.

Containing Structure Description

Skeleton A single BoneRefArray structure can be contained inside a

Skeleton structure.

BoneWeightArray 19

BoneWeightArray

The BoneWeight Array structure contains bone weight data for a skinned mesh. For each vertex

belonging to a mesh, the bone weight array contains n entries, where n is the number of bones

influencing the vertex. See the Skin structure for details about skinning calculations.

Structure Data

The following structures may compose the data stored inside a BoneWeightArray structure.

Substructure Min Max Description

float 1 1 A BoneWeight Array structure must contain an array of

bone weights.

The total number of entries in a bone weight array is equal to the sum of the counts specified in the

BoneCountArray structure for the same skin.

Hierarchy

A BoneWeightArray structure may be contained inside the following structures.

Containing Structure Description

Skin A single BoneWeightArray structure can be contained inside a

Skin structure.

20 OpenGEX Specification

CameraNode

The CameraNode structure represents a single camera node in the scene. Because it is a specific type

of node, it possesses all of the characteristics of a generic node, such as an optional name, transform,

and animation. See the Node structure for more information.

Object Reference

A camera node must contain an ObjectRef structure that references a CameraObject structure.

The camera object contains the information necessary to construct the properly configured camera.

Structure Data

The following structures may compose the data stored inside a CameraNode structure.

Substructure Min Max Description

Name 0 1 A CameraNode structure may have a name.

ObjectRef 1 1 A CameraNode structure must contain a reference to a

CameraObject structure.

Transform

Translation

Rotation

Scale

0 A CameraNode structure may have any number of

transformations applied to it.

Animation 0 A CameraNode structure may contain animation.

Node

BoneNode

GeometryNode

CameraNode

LightNode

0 A CameraNode structure may have any number of

subnodes.

CameraNode 21

Hierarchy

A CameraNode structure may be contained inside the following structures.

Containing Structure Description

 CameraNode structures can be top-level structures.

Node

BoneNode

GeometryNode

CameraNode

LightNode

CameraNode structures can be contained inside any other node

structure.

22 OpenGEX Specification

CameraObject

The CameraObject structure contains data for a camera object. Multiple CameraNode structures

may reference a single camera object, and this allows a scene to contain multiple instances of the same

camera with different transforms.

Structure Data

The following structures may compose the data stored inside a CameraObject structure.

Substructure Min Max Description

Param 0 A CameraObject structure may contain parameters.

For each Param substructure that is present, the value of its attrib property determines the meaning

of the parameter data. The following parameter attrib values are defined by this specification for

use with a camera object.

Å A value of " fov " indicates that the parameter is the horizontal field-of-view angle. This is

multiplied by the global angle metric to obtain a value measured in radians. (See the Metric

structure.)

Å A value of " near " or " far " indicates that the parameter is the positive distance to the near plane

or far plane. These are multiplied by the global distance metric to obtain values measured in meters.

(See the Metric structure.)

If any of the above parameters are not present, then their default values are application-defined.

A writer may include Param, Color , and Texture substructures with application-defined attrib

values. If a reader encounters any of these for which the attrib value is either unsupported or

unrecognized, then the substructure should be ignored.

Hierarchy

A CameraObject structure may be contained inside the following structures.

Containing Structure Description

 CameraObject structures must be top-level structures.

Clip 23

Clip

The Clip structure holds information about an animation clip. The collection of all Animation

structures in an OpenGEX file having the same value for the clip property constitutes a complete

animation clip. A Clip structure having the matching value for its index property can specify a name

and frame rate for that animation clip. Clip structures always appear as top-level structures.

Name

If a Clip structure contains a Name structure, then it defines the externally-visible name of the

animation clip that should be displayed to the user in applications such as a level editor.

Properties

The properties listed in the following table may be specified for a Clip structure.

Property Type Default Description

index unsigned_int32 0 The clip index.

The index property specifies the animation clip to which the Clip structure pertains. This index is

matched to the values of the clip properties of the Animation structures contained throughout the

OpenGEX file.

Structure Data

The following structures may compose the data stored inside a Clip structure.

Substructure Min Max Description

Name 0 1 A Clip structure may have a name.

Param 0 A Clip structure may contain any number of parameters.

For each Param substructure that is present, the value of its attrib property determines the meaning

of the parameter data. The following parameter attrib value is defined by this specification for use

with an attenuation function.

Å A value of " rate " indicates that the parameter is the frame rate at which the animation is intended

to play. The parameter value is divided by the global time metric to obtain a value measured in frames

per second. (See the Metric structure.)

A writer may include Param substructures with application-defined attrib values. If a reader

encounters any of these for which the attrib value is either unsupported or unrecognized, then the

substructure should be ignored.

24 OpenGEX Specification

Hierarchy

A Clip structure may be contained inside the following structures.

Containing Structure Description

 Clip structures must be top-level structures.

Color 25

Color

The Color structure holds a single color value.

Properties

The properties listed in the following table may be specified for a Color structure.

Property Type Default Description

attrib string The color attribute.

The attrib property is required, and it specifies the meaning of the color. See the containing

structures for information about the specific types of colors that are defined.

Structure Data

The following structures may compose the data stored inside a Color structure.

Substructure Min Max Description

float[3]

float[4]

1 1 A Color structure must contain an RGB color or RGBA

color in a float substructure having the corresponding

array size.

Hierarchy

A Color structure may be contained inside the following structures.

Containing Structure Description

Material Color structures can be contained inside a Material structure to

specify material attributes.

Light Object A single Color structure can be contained inside a Light Object

structure to specify the lightôs color.

26 OpenGEX Specification

Extension

The Extension structure is a special container that can be used to hold application-specific data that

is not defined by this specification. An Extension structure can appear anywhere in an OpenGEX

file at the top level or where substructures are allowed.

The meaning of the data contained inside an Extension structure is given by the combination of an

applic property identifying the particular application to which the data pertains and a type property

identifying the specific type of data. The applic property is optional, but its usage is encouraged to

prevent name conflicts in the type property among extensions that do not specify an application.

A reader should ignore any Extension structure, and all of its substructures, in the case that the value

of its applic property is not specifically recognized. In the case that the application is recognized,

but the value of the type property is not supported, the Extension structure, and all of its

substructures, should likewise be ignored.

Properties

The properties listed in the following table may be specified for an Extension structure.

Property Type Default Description

applic string "" A string that uniquely identifies the application to which

the extension pertains.

type string The type of data stored inside the Extension structure.

The applic property is optional, and if it is present, it identifies the application to which the

Extension structure pertains. The application string should consist of a succinct identifier that does

not contain any version information.

The type property is required, and it specifies the meaning of the data contained inside the

Extension structure in the context of the application identified by the applic property.

Structure Data

The following structures may compose the data stored inside an Extension structure.

Substructure Min Max Description

Extension 0 An Extension structure may contain any number of

other Extension structures.

primitive 0 An Extension structure may contain any number of

primitive data structures of any type.

Extension 27

Hierarchy

An Extension structure may be contained inside the following structures.

Containing Structure Description

 Extension structures can be top-level structures.

any An Extension structure can be contained inside any other structure

defined by this specification.

The Extension structure is omitted from the list of legal substructures for every other structure

defined by this specification in order to avoid unnecessary repetition. However, it is a legal substructure

at any location where any other type of structure is allowed.

28 OpenGEX Specification

GeometryNode

The GeometryNode structure represents a single geometry node in the scene. Because it is a specific

type of node, it possesses all of the characteristics of a generic node, such as an optional name,

transform, and animation. See the Node structure for more information.

Object Reference

A geometry node must contain an ObjectRef structure that references a GeometryObject

structure. The geometry object contains all of the required mesh data and optional skinning data.

Material References

A geometry node may contain one or more MaterialRef structures that reference Material

structures. The index property of each material reference specifies to which part a mesh the material

is applied by matching it with the material property of each IndexArray structure in the mesh.

Morph Weights

If the geometry object referenced by the geometry node contains vertex data for multiple morph targets,

then the geometry node may contain one or more Morph Weight structures that specify the blending

weight for each target. When morph weights are present, each MorphWeight structure may be the

target of a Track structure in the animation belonging to the geometry node.

Properties

The properties listed in the following table may be specified for a GeometryN ode structure to control

various rendering options that may be supported by an application.

Property Type Default Description

visible bool Whether the geometry is visible.

shadow bool Whether the geometry casts shadows.

motion_blur bool Whether the geometry is rendered with motion blur.

If any of the visible , shadow , or motion_blur properties is specified, then each overrides the

corresponding property belonging to the referenced GeometryObject structure.

GeometryNode 29

Structure Data

The following structures may compose the data stored inside a GeometryNode structure.

Substructure Min Max Description

Name 0 1 A GeometryNode structure may have a name.

ObjectRef 1 1 A GeometryNode structure must contain a reference

to a GeometryObject structure.

MaterialRef 0 A GeometryNode structure may contain references to

Material structures.

Morph Weight 0 A GeometryNode structure may contain morph

weights.

Transform

Translation

Rotation

Scale

0 A GeometryNode structure may have any number of

transformations applied to it.

Animation 0 A GeometryNode structure may contain animation.

Node

BoneNode

GeometryNode

CameraNode

LightNode

0 A GeometryNode structure may have any number of

subnodes.

Hierarchy

A GeometryNode structure may be contained inside the following structures.

Containing Structure Description

 GeometryNode structures can be top-level structures.

Node

BoneNode

GeometryNode

CameraNode

LightNode

GeometryNode structures can be contained inside any other node

structure.

30 OpenGEX Specification

GeometryObject

The Geometry Object structure contains data for a geometry object. Multiple GeometryNode

structures may reference a single geometry object, and this allows a scene to contain multiple instances

of the same geometry with different transforms and materials.

Properties

The properties listed in the following table may be specified for a Geometry Object structure to

control various rendering options that may be supported by an application.

Property Type Default Description

visible bool true Whether the geometry is visible.

shadow bool true Whether the geometry casts shadows.

motion_blur bool true Whether the geometry is rendered with motion blur.

If the visible property is false , then the geometry should not be rendered but should still

participate in collision detection, if applicable.

If the shadow property is false , then the geometry should not cast shadows, if supported by the

application.

If the motion_blur property is false , then the geometry should not be rendered with motion blur,

if supported by the application.

The visible , shad ow, and motion_blur properties can be overridden by any GeometryNode

structure referencing the Geometry Object structure. The value of any one of these properties takes

effect for a particular geometry node only when the same property is not specified for the geometry

node.

Structure Data

The following structures may compose the data stored inside a GeometryObject structure.

Substructure Min Max Description

Mesh 1 A Geometry Object structure must contain one or

more meshes.

Morph 0 A Geometry Object structure may contain any number

of Morph structures.

GeometryObject 31

A geometry object contains one Mesh structure for each level of detail.

A geometry object may contain a Morph structure for each morph target for which vertex data exists

inside the Mesh structures.

Hierarchy

A GeometryObject structure may be contained inside the following structures.

Containing Structure Description

 Geometry Object structures must be top-level structures.

32 OpenGEX Specification

IndexArray

The IndexArray structure contains index array data for a mesh. See the Mesh structure for

information about how arrays are used in a mesh.

Properties

The properties listed in the following table may be specified for an IndexArray structure.

Property Type Default Description

material unsigned_ int32 0 The material index for the primitives constructed

from the index array.

restart unsigned_int64 The primitive restart index for triangle strips.

front string "ccw" Whether front faces are wound clockwise or

counterclockwise.

The material property specifies a material index for the list of primitives contained in the

IndexArray structure. The actual set of materials to be assigned to each list of primitives is specified

by the MaterialRef structures contained in the GeometryNode structure that references the

GeometryObject structure containing the index array as part of a mesh. The value of the index

property for each MaterialRef structure is matched to the value of the index arrayôs material

property.

The restart property can only be specified when the primitive property of the Mesh structure

containing the IndexArray structure is either "li ne_strip" or "triangle_strip" . If this

property is present, then its value defines the index that signals the end of a strip. When this index is

encountered, it does not cause a new vertex to be added to the current strip but instead starts a new strip

with the next index. If the restart property is not specified at all, then there is no index that causes

a new strip to be started.

The front property must be either "cw" or "ccw" , and it specifies whether front-facing primitives

are wound clockwise or counterclockwise, respectively. A reader is free to reorder indexes to follow

its own conventions or to enforce a consistent winding direction.

IndexArray 33

Structure Data

The following structures may compose the data stored inside an IndexArray structure.

Substructure Min Max Description

unsigned_int8

unsigned_int16

unsigned_int32

unsigned_int64

unsigned_int8[2]

unsigned_int16[2]

unsigned_int32[2]

unsigned_int64[2]

unsigned_int8[3]

unsigned_int16[3]

unsigned_int32[3]

unsigned_int64[3]

unsigned_int8[4]

unsigned_int16[4]

unsigned_int32[4]

unsigned_int64[4]

1 1 An IndexArray structure must contain

an array of vertex indexes, possibly

grouped in subarrays whose size

corresponds to the type of geometric

primitive specified by the containing mesh.

For points, line strips, and triangle strips,

there are no subarrays. For independent

lines, the subarray size must be 2, for

independent triangles, the subarray size

must be 3, and for independent quads, the

subarray size must be 4.

Hierarchy

An IndexArray structure may be contained inside the following structures.

Containing Structure Description

Mesh IndexArray structures can be contained inside a Mesh structure.

34 OpenGEX Specification

Key

The Key structure contains key data for an animation track.

Properties

The properties listed in the following table may be specified for a Key structure.

Property Type Default Description

kind string "value" The kind of data.

The kind property specifies the type of key data and must have one of the following values.

Å A value of " value " indicates that the data contained in the Key structure provides the actual values

of the keys. If the Key structure is contained inside a Time structure, then the key values are times.

(Times are multiplied by the global time scale to obtain seconds. See the Metric structure.)

Otherwise, if the Key structure is contained inside a Value structure, then the key values are

coordinate values, rotation angles, etc., depending on the target of the animation track.

Å A value of " - control " or " +control " indicates that the data contained in the Key structure

provides the incoming or outgoing control points for the keys, respectively. Control point data is

valid only inside Time and Value structures having a curve property value of "bezier" .

Å A value of " tension " , " continuity " , or " bias " indicates that the data contained in the Key

structure provides the tension, continuity, or bias parameters for the keys. This data is valid only

inside Value structures having a curve property value of " tcb " .

Structure Data

The following structures may compose the data stored inside a Key structure.

Substructure Min Max Description

float

float[3]

float[4]

float[16]

1 1 A Key structure must contain an array of floating-point

key values.

For Key structures contained inside a Time structure, the data is always scalar, so the substructure

must be of type float with no array size.

For Key structures contained inside a Value structure, the data type must match the dimensionality

of the data stored in the target of the animation track when the keyôs kind property has a value of

" value " , " - control " , or " +control " . The data type is always scalar when the kind property

Key 35

has a value of " tension " , " continuity " , or " bias " . See the Track structure for information

about the meaning of the key data and how it is used to calculate interpolated values.

Hierarchy

A Key structure may be contained inside the following structures.

Containing Structure Description

Time

Value

Key structures can be contained inside Time and Value structures

belonging to an animation track.

36 OpenGEX Specification

LightNode

The LightNode structure represents a single light node in the scene. Because it is a specific type of

node, it possesses all of the characteristics of a generic node, such as an optional name, transform, and

animation. See the Node structure for more information.

Object Reference

A light node must contain an ObjectRef structure that references a LightObject structure. The

light object contains the information necessary to construct the proper type of light source.

Properties

The properties listed in the following table may be specified for a Light Node structure.

Property Type Default Description

shadow bool Whether the light casts shadows.

If the shadow property is specified, then it overrides the value of the shadow property belonging to

the referenced LightObject structure.

Structure Data

The following structures may compose the data stored inside a LightNode structure.

Substructure Min Max Description

Name 0 1 A Light Node structure may have a name.

ObjectRef 1 1 A Light Node structure must contain a reference to a

LightObject structure.

Transform

Translation

Rotation

Scale

0 A Light Node structure may have any number of

transformations applied to it.

Animation 0 A Light Node structure may contain animation.

Node

BoneNode

GeometryNode

CameraNode

LightNode

0 A Light Node structure may have any number of

subnodes.

LightNode 37

Hierarchy

A LightNode structure may be contained inside the following structures.

Containing Structure Description

 LightNode structures can be top-level structures.

Node

BoneNode

GeometryNode

CameraNode

LightNode

LightNode structures can be contained inside any other node

structure.

38 OpenGEX Specification

LightObject

The LightObject structure contains data for a light object. Multiple LightNode structures may

reference a single light object, and this allows a scene to contain multiple instances of the same light

with different transforms.

Properties

The properties listed in the following table may be specified for a LightO bject structure.

Property Type Default Description

type string The type of light.

shadow bool true Whether the light casts shadows.

The type property is required and defines the type of light being described by the light object. It must

specify one of the following values.

Å A value of "infinite" indicates that the light source is to be treated as if it were infinitely far

away so that its rays are parallel. In object space, the light rays point in the direction of the negative

z axis.

Å A value of "point" indicates that the light source is a point light that radiates in all directions.

Å A value of "spot" indicates that the light source is a spot light that radiates from a single point but

in a limited range of directions. In object space, the primary direction of radiation is the negative z

axis.

If the shadow property is false , then the light source should not cast shadows, if supported by the

application. The shadow property can be overridden by any LightNode structure referencing the

LightObj ect structure. The value of this property takes effect for a particular light node only when

the same property is not specified for the light node.

LightObject 39

Structure Data

The following structures may compose the data stored inside a LightObject structure.

Substructure Min Max Description

Color 0 1 A LightObject structure may have a color.

Param 0 1 A LightObject structure may have an intensity

parameter.

Texture 0 1 A LightObject structure may have a projected texture.

Atten 0 A LightObject structure may have any number of

attenuation functions applied to it.

For each Color substructure that is present, the value of its attrib property determines the meaning

of the color data. The following color attrib value is defined by this specification for use with a light

object.

Å A value of "light" indicates that the color is the main color of light emitted by the light source. If

this color is not present, then the default light color should be white with RGB value (1.0, 1.0, 1.0).

For each Param substructure that is present, the value of its attrib property determines the meaning

of the parameter data. The following parameter attrib value is defined by this specification for use

with a light object.

Å A value of " intensity " indicates that the parameter is an intensity value that should scale the

lightôs color. If this parameter is not present, then the default intensity should be 1.0.

For each Texture substructure that is present, the value of its attrib property determines the

meaning of the texture map. The following texture attri b value is defined by this specification for

use with a light object.

Å A value of " projection " indicates that the texture map is a spot light projection. The texture

map should be oriented so that right direction is aligned to the object-space positive x axis and the

up direction is aligned to the object-space positive y axis.

A writer may include Param, Color , and Texture substructures with application-defined attrib

values. If a reader encounters any of these for which the attrib value is either unsupported or

unrecognized, then the substructure should be ignored.

40 OpenGEX Specification

Hierarchy

A LightObject structure may be contained inside the following structures.

Containing Structure Description

 LightObject structures must be top-level structures.

Material 41

Material

The Material structure contains information about a material. Material structures are referenced

by geometry nodes through MaterialRef structures belonging to GeometryNode structures.

Name

If a Material structure contains a Name structure, then it defines the externally-visible name of the

material that should be displayed to the user in applications such as a level editor. (This name should

not be confused with an OpenDDL name that could be assigned to the Material structure in an

OpenGEX file.)

Properties

The properties listed in the following table may be specified for a Material structure.

Property Type Default Description

two_sided bool false Whether the material is two-sided.

If the two_sided property is true, then the geometry to which the material is applied should be

rendered two-sided without any back-face culling.

Structure Data

The following structures may compose the data stored inside a Material structure.

Substructure Min Max Description

Name 0 1 A Material structure may have a name.

Color 0 A Material structure may contain any number of

colors.

Param 0 A Material structure may contain any number of

parameters.

Texture 0 A Material structure may contain any number of

textures.

For each Color substructure that is present, the value of its attrib property determines the meaning

of the color data. The following color attrib values are defined by this specification for use with a

material.

Å A value of "diffuse" indicates that the color is a diffuse reflection color. If this color is not

present, then the default diffuse reflection color should be white with RGB value (1.0, 1.0, 1.0).

42 OpenGEX Specification

Å A value of " specular " indicates that the color is a specular reflection color. If this color is not

present, then the default specular reflection color should be black with RGB value (0.0, 0.0, 0.0).

Å A value of " emission " indicates that the color is an emission color (also known as the self-

illumination color). If this color is not present, then the default emission color should be black with

RGB value (0.0, 0.0, 0.0).

Å A value of " opacity " indicates that the color is an opacity color. If this color is not present, then

the default opacity color should be white with RGB value (1.0, 1.0, 1.0).

Å A value of " transparency " indicates that the color is a transparency color. If this color is not

present, then the default transparency color should be black with RGB value (0.0, 0.0, 0.0).

For each Param substructure that is present, the value of its attrib property determines the meaning

of the parameter data. The following parameter attrib value is defined by this specification for use

with a material.

Å A value of "specular_power" indicates that the parameter is the specular power used in the

Phong shading model. If this parameter is not present, then the default specular power should be 1.0.

For each Texture substructure that is present, the value of its attrib property determines the

meaning of the texture map. The following texture attrib values are defined by this specification for

use with a material.

Å A value of "diffuse" indicates that the texture map modulates the diffuse reflection color.

Å A value of " specular " indicates that the texture map modulates the specular reflection color.

Å A value of " specular_power " indicates that the texture map modulates the specular power.

Å A value of " emission " indicates that the texture map adds to the emission color.

Å A value of " opacity " indicates that the texture map modulates the opacity color.

Å A value of " transparency " indicates that the texture map modulates the transparency color.

Å A value of " normal " indicates that the texture map contains tangent-space normal vectors.

A writer may include Param, Color , and Texture substructures with application-defined attrib

values. If a reader encounters any of these for which the attrib value is either unsupported or

unrecognized, then the substructure should be ignored.

Hierarchy

A Material structure may be contained inside the following structures.

Containing Structure Description

 Material structures must be top-level structures.

MaterialRef 43

MaterialRef

The MaterialRef structure holds a reference to a Material structure.

Properties

The properties listed in the following table may be specified for a MaterialRef structure.

Property Type Default Description

index unsigned_ int32 0 The material index.

The index property specifies the material index to which the referenced material is bound. This index

is matched to the values of the material properties of the IndexArray structures contained in the

meshes belonging to the GeometryObject referenced by the GeometryNode structure containing

the MaterialRef structure.

Structure Data

The following structures may compose the data stored inside a MaterialRef structure.

Substructure Min Max Description

ref 1 1 A Material Ref structure must contain a reference to a

Material structure.

Hierarchy

A MaterialRef structure may be contained inside the following structures.

Containing Structure Description

GeometryNode Multiple MaterialRef structures can be contained inside a

GeometryNode structure, but each must have a different value for

the index property.

44 OpenGEX Specification

Mesh

The Mesh structure contains data for a single geometric mesh, and a GeometryObject structure

contains one mesh for each level of detail. Each mesh typically contains several arrays of per-vertex

data and one or more index arrays as shown in the Listing 2.2.

A mesh may contain vertex data for multiple morph targets. The morph target to which each vertex

array belongs is determined by the value of its morph property. See the VertexArray structure for

details about determining which vertex arrays belong to each morph target.

A mesh may also contain a single Skin structure that holds the skeleton and bone influence data needed

for skinning.

Listing 2.2. This mesh structure contains per-vertex positions, normals, and texture coordinates, and it

contains an index array that determines how triangle primitives are assembled.

Mesh (primitive = "triangles")

{

 VertexArray (attrib = "position")

 {

 floa t [3] {...}

 }

 VertexArray (attrib = "normal")

 {

 float [3] {...}

 }

 VertexArray (attrib = "texcoord")

 {

 float [2] {...}

 }

 IndexArray (material = 0)

 {

 unsigned _int16 [3] {...}

 }

}

Mesh 45

Properties

The properties listed in the following table may be specified for a Mesh structure.

Property Type Default Description

lod unsigned_ int32 0 The level of detail. A value of 0

corresponds to the highest level of detail.

primitive string "triangles" The primitive type.

The lod property specifies the level of detail to which the mesh corresponds. A GeometryObject

structure may contain any number of Mesh structures as long as they each have a unique level of detail.

The highest level of detail is number 0, and successively lower levels of detail count upward.

The primitive property specifies the type of geometric primitive used by the mesh. It must have

one of the values shown in Table 2.1, and it must be the same value for each level of detail.

Table 2.1. This table describes the geometric primitives corresponding to each value of the primitive

property. The value of n is the total number of indexes if an IndexArray structure is present or the total number

of vertices in each VertexArray structure, otherwise. Primitives are indexed by the letter i, starting at zero.

Primitive Description

"points" The mesh is composed of a set of independent points. The number of

points is n, and point i is given by vertex i.

"lines" The mesh is composed of a set of independent lines. The number of lines

is 2n , and line i is composed of vertices 2i and 2 1i+.

"line_strip" The mesh is composed of one or more line strips. The number of lines is

1n-, and line i is composed of vertices i and 1i+.

"triangles" The mesh is composed of a set of independent triangles. The number of

triangles is 3n , and triangle i is composed of vertices 3i , 3 1i+, and 3 2.i+

"triangle_strip" The mesh is composed of one or more triangle strips. The number of

triangles is 2n- , and triangle i is composed of vertices i, 1i+, and 2i+

when i is even or vertices i, 2i+ , and 1i+ when i is odd, in the orders

listed.

" quads" The mesh is composed of a set of individual quads. The number of quads

is 4n , and quad i is composed of vertices 4i , 4 1i+, 4 2i+ , and 4 3i+ .

For line strips and triangle strips, the restart property of the IndexArray structure may be used

to construct multiple independent strips.

46 OpenGEX Specification

Structure Data

The following structures may compose the data stored inside a Mesh structure.

Substructure Min Max Description

VertexArray 1 A Mesh structure must contain one or more vertex arrays.

IndexArray 0 A Mesh structure may contain one or more index arrays.

Skin 0 1 A Mesh structure may contain skinning data.

All VertexArray structures belonging to a mesh must specify data for the same number of vertices.

Each IndexArray structure specifies how the vertices are assembled into geometric primitives. For

lines, triangles, and quads, the index array contains subarrays that each specify the indexes of the

vertices composing a single primitive. For points, line strips, and triangle strips, the index data is stored

as a single array.

If a mesh does not contain an IndexArray structure, then it is as if an index array with the default

properties existed and contained each index between 0 and 1n- in order and grouped into subarrays as

necessary, where n is the number of vertices in each VertexArray structure.

Hierarchy

A Mesh structure may be contained inside the following structures.

Containing Structure Description

GeometryObject Multiple Mesh structures can be contained inside a

GeometryObject structure, but each must have a different lod

value.

Metric 47

Metric

The Metric structure specifies global measurement and orientation properties such as the distance

scale and up direction.

Properties

The properties listed in the following table may be specified for a Metric structure.

Property Type Default Description

key string The metric identifier.

The key property is required and specifies the type of metric being defined. It must specify one of the

following values.

Å A value of "distance" indicates that the metric defines the factor by which all distance values

should be multiplied to obtain a value measured in meters.

Å A value of " angle " indicates that the metric defines the factor by which all angle values should be

multiplied to obtain a value measured in radians.

Å A value of " time " indicates that the metric defines the factor by which all time values should be

multiplied to obtain a value measured in seconds.

Å A value of " up" indicates that the metric defines the world-space axis that corresponds to the up

direction.

Structure Data

The following structures may compose the data stored inside a Metric structure.

Substructure Min Max Description

float

string

1 1 A Metric structure must contain one data structure

holding the value of the metric.

For the "distance" , " angle " , and " time " metrics, the data contained in the structure must be a

single floating-point value. The default value for each of these three metrics is 1.0 if any are not

specified in an OpenGEX file.

For the " up" metric, the data contained in the structure must be a single string value equal to either

"y" or " z" . The default value for the up direction is " z" if it is not specified in an OpenGEX file.

The default metrics would be defined as shown in Listing 2.3.

48 OpenGEX Specification

Listing 2.3. These Metric structures define the default units of measurement and up direction.

Metric (key = "distance") { float {1.0}}

Metric (key = "angle") { float {1.0}}

Metric (key = "time") { float {1.0}}

Metric (key = "up") { string {"z"}}

Hierarchy

A Metric structure may be contained inside the following structures.

Containing Structure Description

 Metric structures must be top-level structures.

Morph 49

Morph

The Morph structure holds information about a morph target belonging to a GeometryObject

structure. See the VertexArray structure for a description of what vertex data constitutes a complete

morph target.

Name

If a Morph structure contains a Name structure, then it defines the externally-visible name of the morph

target that should be displayed to the user in applications such as a level editor.

Properties

The properties listed in the following table may be specified for a Morph structure.

Property Type Default Description

index unsigned_int32 0 The morph target index.

base unsigned_int32 The base morph target index for a relative morph

target.

The index property specifies the morph target index. This index is matched to the values of the morph

properties of the VertexArray structures contained inside the same GeometryObject structure

as the Morph structure.

The base property is optional and, if specified, indicates that the morph target is relative and intended

to be applied as a difference with the morph target having the given base index. If the base property

is not specified, then the morph target is absolute. Any morph target that does not have a corresponding

Morph structure is absolute.

If a base index is specified to indicate a relative morph target, then the morph target to which the base

index refers must be an absolute morph target.

See the MorphWeight structure for details about calculating vertex attributes for absolute and relative

morph targets.

Structure Data

The following structures may compose the data stored inside a Morph structure.

Substructure Min Max Description

Name 0 1 A Morph structure may have a name.

50 OpenGEX Specification

Hierarchy

A Morph structure may be contained inside the following structures.

Containing Structure Description

GeometryObject Multiple Morph structures can be contained inside a

GeometryObject structure, but each must have a different value

for the index property.

MorphWeight 51

MorphWeight

The Morph Weight structure holds a single morph weight for a GeometryNode structure that

references a GeometryObject structure containing vertex data for multiple morph targets.

A Geometry Node structure typically contains a MorphWeight structure for each morph target

stored in the GeometryObject structure, but this is not a requirement. If a geometry node contains

any morph weight data at all, then the weight for any unreferenced morph target shall be assumed to be

zero. If a geometry node contains no morph weight data, then the weight for the morph target having

index 0 shall be one, and the weights for all other morph targets shall be zero.

A Morph Weight structure can be the target of a track stored inside an Animation structure.

Morphing

When a mesh is deformed by the morphing operation, the morphed attribute morphedA of a vertex (where

an attribute can mean a position, normal, etc.) is given by

 morphed i i

i

w=äA M ,

where iw is the weight for the morph target having index i, and the summation is taken over all indexes

for which a morph target exists and a weight is specified. The symbol iM represents the input vertex

attribute value for morph target i, and it depends on whether the morph target is absolute or relative as

determined by the presence of the base property in the corresponding Morph structure. Let iA be the

value of the vertex attribute specified for morph target i inside the appropriate VertexArray structure

belonging to the morph target. If the morph target is absolute, then i i=M A . If the morph target is

relative, then ()i i b i= -M A A , where the function ()b i produces the base index for the morph target

given by the base property of its Morph structure.

Properties

The properties listed in the following table may be specified for a MorphWeight structure.

Property Type Default Description

index unsigned_int32 0 The morph target index.

The index property specifies the morph target index to which the morph weight applies. If the

GeometryObject structure contains no vertex data corresponding to this morph target index, then

the MorphWeight structure should be ignored. Each MorphWeight structure belonging to any

particular GeometryNode structure must have a unique morph target index among all morph weights

belonging to that geometry node.

52 OpenGEX Specification

Structure Data

The following structures may compose the data stored inside a Morph Weight structure.

Substructure Min Max Description

float 1 1 A Morph Weight structure must contain a single

floating-point value.

Hierarchy

A Morph Weight structure may be contained inside the following structures.

Containing Structure Description

GeometryNode Multiple Morph Weight structures can be contained inside a

GeometryNode structure.

Name 53

Name

The Name structure holds the name of a node, morph target, material, or animation clip.

Structure Data

The following structures may compose the data stored inside a Name structure.

Substructure Min Max Description

string 1 1 A Name structure must contain a name string.

Hierarchy

A Name structure may be contained inside the following structures.

Containing Structure Description

Node

BoneNode

GeometryNode

CameraNode

LightNode

A single Name structure can be contained inside any node structure.

Morph A single Name structure can be contained inside any Morph

structure.

Material A single Name structure can be contained inside any Material

structure.

Clip A single Name structure can be contained inside any Clip structure.

54 OpenGEX Specification

Node

The Node structure represents a single generic node in the scene with no associated object. The various

types of node structures (Node, BoneNode, GeometryNode , CameraNode, and LightNode) are

allowed to be top-level structures in an OpenGEX file, and each one can contain any number of other

node structures of any type. This organization of nodes forms the main tree hierarchy of the scene.

Every node can possess a name, a set of transforms, and a set of animations.

Name

If a Node structure contains a Name structure, then it defines the externally-visible name of the node

that should be displayed to the user in applications such as a level editor. (This name should not be

confused with an OpenDDL name that could be assigned to the Node structure in an OpenGEX file.)

Transforms

A Node structure may contain any number of Transform , Translation , Rotation , and Scale

structures, and these collectively define the local transform for the node. Each transform can be

designated as a node transform or an object transform (based on the value of its object property),

and these divide the complete local transform into two factors. The node transform is inherited by

subnodes, meaning that the local transform of a subnode is relative only to the node transform factor of

its parent node. The object transform is applied only to the node to which it belongs and is not inherited

by any subnodes.

The node transform is calculated by converting all of the transforms having an object property value

of false to a 4 4³ matrix and multiplying them together in the order that they appear as substructures.

Similarly, the object transform is calculated by multiplying matrices together for the transforms having

an object property value of true in the order that they appear as substructures. Any interleaving of

transforms having different object property values has no meaning.

Animation

A node structure may contain one or more animation clips. Each clip can contain a set of animation

tracks that each target one of the transforms contained by the node structure (or a Morph Weight

structure in the case of a geometry node). Animation tracks often target a single component of a nodeôs

transform, such as the x coordinate of the node position or a rotation about a particular axis, and this is

the reason that multiple transform structures are supported and expected to be used in the ordinary

application of animation. See the Animation and Track structures for more information.

Node 55

Structure Data

The following structures may compose the data stored inside a Node structure.

Substructure Min Max Description

Name 0 1 A Node structure may have a name.

Transform

Translation

Rotation

Scale

0 A Node structure may have any number of

transformations applied to it.

Animation 0 A Node structure may contain animation tracks that are

applied to the node transformations or morph weights.

Node

BoneNode

GeometryNode

CameraNode

LightNode

0 A Node structure may have any number of subnodes.

Hierarchy

A Node structure may be contained inside the following structures.

Containing Structure Description

 Node structures can be top-level structures.

Node

BoneNode

GeometryNode

CameraNode

LightNode

Node structures can be contained inside any other node structure.

56 OpenGEX Specification

ObjectRef

The ObjectRef structure holds a reference to an object structure. Object references are required by

the GeometryNode , CameraNode, and LightNode structures, and they link these types of nodes

to the objects they represent in the scene. A single object may be referenced by multiple nodes, and this

allows an object to be instanced multiple times in the scene with different transforms and animations.

Structure Data

The following structures may compose the data stored inside a ObjectRef structure.

Substructure Min Max Description

ref 1 1 An ObjectRef structure must contain a reference to a

GeometryObject structure, LightObject structure,

or CameraObject structure.

Hierarchy

A ObjectRef structure may be contained inside the following structures.

Containing Structure Description

GeometryNode

CameraNode

LightNode

A single ObjectRef structure must be contained inside every

GeometryNode , CameraNode, and LightNode structure.

Param 57

Param

The Param structure holds a single parameter value.

Properties

The properties listed in the following table may be specified for a Param structure.

Property Type Default Description

attrib string The parameter attribute.

The attrib property is required, and it specifies the meaning of the parameter. See the containing

structures for information about the specific types of parameters that are defined.

Structure Data

The following structures may compose the data stored inside a Param structure.

Substructure Min Max Description

float 1 1 A Param structure must contain one float substructure

holding the value of the parameter.

Hierarchy

A Param structure may be contained inside the following structures.

Containing Structure Description

Material Param structures can be contained inside a Material structure to

specify material attributes.

CameraObject

LightObject

Param structures can be contained inside a CameraObject or

LightObject structure to specify object parameters.

Atten Param structures can be contained inside an Atten structure to

specify attenuation parameters.

Clip Param structures can be contained inside a Clip structure to specify

animation clip attributes.

58 OpenGEX Specification

Rotation

The Rotation structure holds a rotation transformation in one of several possible variants.

When contained inside a node structure, a Rotation structure can be the target of a track stored inside

an Animation structure.

Properties

The properties listed in the following table may be specified for a Rotation structure.

Property Type Default Description

kind string "axis" The kind of rotation.

object bool false Whether the rotation is applied to the object only.

The kind property specifies the particular variant of the rotation transformation, and it must have one

of the following values.

Å A value of "x" , "y" , or "z" indicates that the rotation occurs about the x, y, or z axis. For these

variants, the data contained inside the Rotation structure must be a single floating-point value

representing the angle of rotation. For a particular angle q, a rotation about the x, y, or z axis is

converted to a 4 4³ matrix by using the following formulas.

 x

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

q q

q q

è ø
é ù-
é ù=
é ù
é ù
ê ú

M y

cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

q q

q q

è ø
é ù
é ù=
-é ù
é ù
ê ú

M z

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

q q

q q

-è ø
é ù
é ù=
é ù
é ù
ê ú

M

Å A value of "axis" indicates that the rotation occurs about an arbitrary axis. For this variant, the

data contained inside the Rotation structure must be a single array of four floating-point values.

The first entry in the array is the angle of rotation, and the remaining three entries define the x, y, and

z components of the axis of rotation. For a particular angle q, a rotation about an axis A is converted

to a 4 4³ matrix by using the following formula.

() () ()

() () ()

() () ()

2

2
axis

2

cos 1 cos 1 cos sin 1 cos sin

1 cos sin cos 1 cos 1 cos sin

1 cos sin 1 cos sin cos 1 cos

x x y z x z y

x y z y y z x

x z y y z x z

A A A A A A A

A A A A A A A

A A A A A A A

q q q q q q

q q q q q q

q q q q q q

+ - - - - +è ø
é ù
= - + + - - -é ù
é ù- - - + + -ê ú

M

 It is not a requirement that the specified axis have unit length, so a reader should normalize the axis

before calculating a rotation matrix.

Å A value of "quaternion" indicates that the rotation is given by a quaternion. For this variant, the

data contained inside the Rotation structure must be a single array of four floating-point values

Rotation 59

(), , ,x y z w that define the quaternion x y z w+ + +i j k . For a particular unit quaternion (), , ,x y z w, the

corresponding 4 4³ rotation matrix is given by the following formula.

2 2

2 2
quaternion

2 2

1 2 2 2 2 2 2

2 2 1 2 2 2 2

2 2 2 2 1 2 2

y z xy wz xz wy

xy wz x z yz wx

xz wy yz wx x y

- - - +è ø
é ù
= + - - -é ù
é ù- + - -ê ú

M

 It is not a requirement that the specified quaternion have unit length, so a reader should normalize

the quaternion before calculating a rotation matrix.

For the rotation variants that directly include an angle value, the angle is multiplied by the global angle

metric to obtain an angle measured in radians. (See the Metric structure.) Note that a positive angle

corresponds to a counterclockwise rotation when the axis points toward the viewer.

The object property specifies whether the rotation transformation applies to the node or to the object.

See the Node structure for a discussion of node transforms and object transforms.

Structure Data

The following structures may compose the data stored inside a Rotation structure.

Substructure Min Max Description

float

float[4]

1 1 A Rotation structure must contain one float

substructure holding the value of the rotation.

If the kind property is "x" , "y" , or "z" , then the Rotation structure must contain a single

floating-point value representing the angle of rotation. If the kind property is "xyz" or

"quaternion" , then the Rotation structure must contain a single array of four floating-point

values.

Hierarchy

A Rotation structure may be contained inside the following structures.

Containing Structure Description

Node

BoneNode

GeometryNode

CameraNode

LightNode

Rotation structures can be contained inside any node structure.

Texture Rotation structures can be contained inside a Texture structure

to specify texture coordinate transformations.

60 OpenGEX Specification

Scale

The Scale structure holds a scale transformation in one of several possible variants.

When contained inside a node structure, a Scale structure can be the target of a track stored inside an

Animation structure.

Properties

The properties listed in the following table may be specified for a Scale structure.

Property Type Default Description

kind string " xyz " The kind of scale.

object bool false Whether the scale is applied to the object only.

The kind property specifies the particular variant of the scale transformation, and it must have one of

the following values.

Å A value of "x" , "y" , or "z" indicates that the scale occurs along only the x, y, or z axis. For these

variants, the data contained inside the Scale structure must be a single floating-point value

representing the scale. For a particular scale s, a scale transformation along the x, y, or z axis is

converted to a 4 4³ matrix by using the following formulas.

 x

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

sè ø
é ù
é ù=
é ù
é ù
ê ú

M y

1 0 0 0

0 0 0

0 0 1 0

0 0 0 1

s

è ø
é ù
é ù=
é ù
é ù
ê ú

M z

1 0 0 0

0 1 0 0

0 0 0

0 0 0 1

s

è ø
é ù
é ù=
é ù
é ù
ê ú

M

Å A value of " xyz " indicates that the scale occurs along all three coordinate axes. For this variant, the

data contained inside the Scale structure must be a single array of three floating-point values

representing the scale along each of the x, y, and z axes. For a particular scale S, a scale transformation

is converted to a 4 4³ matrix by using the following formula.

 xyz

0 0 0

0 0 0

0 0 0

0 0 0 1

x

y

z

S

S

S

è ø
é ù
é ù=
é ù
é ù
ê ú

M

The object property specifies whether the scale transformation applies to the node or to the object.

See the Node structure for a discussion of node transforms and object transforms.

Scale 61

Structure Data

The following structures may compose the data stored inside a Scale structure.

Substructure Min Max Description

float

float[3]

1 1 A Scale structure must contain one float substructure

holding the value of the scale.

If the kind property is "x" , "y" , or "z" , then the Scale structure must contain a single floating-

point value representing the scale along one axis. If the kind property is "xyz" , then the Scale

structure must contain a single array of three floating-point values representing the scales along all

three axes.

Hierarchy

A Scale structure may be contained inside the following structures.

Containing Structure Description

Node

BoneNode

GeometryNode

CameraNode

LightNode

Scale structures can be contained inside any node structure.

Texture Scale structures can be contained inside a Texture structure to

specify texture coordinate transformations.

62 OpenGEX Specification

Skeleton

The Skeleton structure contains information about the bones belonging to a skeleton. The bone

nodes belonging to a skeleton are identified by an array of OpenDDL references contained in a

BoneRefArray substructure. The bind-pose transforms of those bone nodes are specified by an array

of 4 4³ matrices contained in a Transform substructure. See the Skin structure for details about

how these are used in skinning calculations.

Structure Data

The following structures may compose the data stored inside a Skeleton structure.

Substructure Min Max Description

BoneRefArray 1 1 A Skeleton structure must contain a bone reference

array.

Transform 1 1 A Skeleton structure must contain an array of bind-

pose transforms.

The number of matrices specified in the Transform structure must match the number of bones

referenced in the BoneRefArray structure.

Hierarchy

A Skeleton structure may be contained inside the following structures.

Containing Structure Description

Skin A single Skeleton structure must be contained inside every Skin

structure.

Skin 63

Skin

The Skin structure contains information about a skeleton and the per-vertex bone influence data for a

skinned mesh. Each Mesh structure may contain a single Skin structure, which is required to contain

all of the substructures shown in Listing 2.4.

The Skeleton structure contains an array of OpenDDL references to the full set of bone nodes that

make up the skeleton and an array of their bind-pose transforms.

Listing 2.4. A Skin structure is required to contain the substructures shown here.

Skin

{

 Skeleton

 {

 BoneRefArray // References to the bone nodes.

 {

 ref {$bone1, $bone2, ...}

 }

 Transform // Bind - pose transforms for all bones.

 {

 float [16]

 {

 ...

 }

 }

 }

 BoneCountArray // Number of bones influencing each vertex.

 {

 unsigned_int8 {...}

 }

 BoneIndexArray // Bone index per influence per vertex.

 {

 unsigned_int8 {...}

 }

 BoneWeightArray // Weight per influence per vertex.

 {

 float {...}

 }

}

64 OpenGEX Specification

The BoneCountArray structure contains an array of counts that specify the number of bones

influencing each vertex in the mesh. The size of this array must match the number of vertices contained

in each VertexArray structure belonging to the mesh.

The BoneIndexArray and BoneWeightArray structures contain arrays of bone indexes and

weighting values for each influence affecting each vertex. The size of both of these arrays must be

equal to the sum of the bone counts contained in the BoneCountArray structure. Each index

contained in the BoneIndexArray structure must be in the range []0, 1N- , where N is the total

number of bones referenced by the skeleton.

Skinning

When a mesh is deformed by the skinning operation, the skinned position skinnedP of a vertex is given by

 () ()

1
1

skinned bind bind

0

n

i k i k i

i

w
-

-

=

=äP M B T P ,

where bindP is the bind-pose position of the vertex (having an implicit w coordinate of one), bindT is the

bind-pose transform of the skin given by the Transform substructure (if present), and the other

symbols have the following meanings:

Å n is the number of bones influencing the vertex, as given by the corresponding entry in the

BoneCountArray structure.

Å The function ()k i produces the absolute bone index for the i-th influence, as given by the i-th entry

corresponding to the vertex in the BoneIndexArray structure.

Å ()k iB is the bind-pose transform of the i-th influence, as given by entry ()k i in the Transform

substructure of the Skeleton structure.

Å ()k iM is the current transform of the i-th influence, equal to the transform of the bone node referenced

by entry ()k i in the BoneRefArray substructure of the Skeleton structure.

Å iw is the weight of the i-th influence, as given by the i-th entry corresponding to the vertex in the

BoneWeightArray structure.

Normal vectors (treated as row vectors here) are calculated in a similar manner, but using the inverses

of the matrices involved. The skinned vertex normal skinnedN is given by

 () ()

1
1 1

skinned bind bind

0

n

i k i k i

i

w
-

- -

=

=äN N T B M ,

where bindN is the bind-pose normal of the vertex (having an implicit w coordinate of zero). Of course,

if the upper-left 3 3³ portions of the matrices are known to be orthogonal, then normals can be calculated

using the non-inverted matrices.

Skin 65

Structure Data

The following structures may compose the data stored inside a Skin structure.

Substructure Min Max Description

Transform 0 1 A Skin structure may contain a bind-pose transform

for the mesh.

Skeleton 1 1 A Skin structure must contain a skeleton.

BoneCountArray 1 1 A Skin structure must contain a bone count array.

BoneIndexArray 1 1 A Skin structure must contain a bone index array.

BoneWeightArray 1 1 A Skin structure must contain a bone weight array.

Hierarchy

A Skin structure may be contained inside the following structures.

Containing Structure Description

Mesh A single Skin structure can be contained inside a Mesh structure.

66 OpenGEX Specification

Texture

The Texture structure holds information about a single texture map and how it is accessed with

texture coordinates.

Texture Coordinate Transform

A Texture structure may contain any number of Transform , Translation , Rotation , and

Scale structures, and these collectively define the transformation applied to texture coordinates before

they are used to access the texture map. The texture coordinate transform is calculated by converting

each of the transforms to a 4 4³ matrix and multiplying them together in the order that they appear as

substructures. (The object property of each transform structure is ignored in this case.)

The texture coordinate transformations may be animated through the presence of Animation

substructures whose tracks target the specific transform structures.

Properties

The properties listed in the following table may be specified for a Texture structure.

Property Type Default Description

attrib string The parameter attribute.

texcoord unsigned_ int32 0 The index of the texture coordinate set associated

with the texture.

The attrib property is required, and it specifies the meaning of the texture. See the containing

structures for information about the specific types of textures that are defined.

The texcoord property specifies which texture coordinate set belonging to a mesh should be used to

access the texture.

Texture 67

Structure Data

The following structures may compose the data stored inside a Texture structure.

Substructure Min Max Description

string 1 1 A Texture structure must contain one string

substructure holding the file name of the texture.

Transform

Translation

Rotation

Scale

0 A Texture structure may contain any number of

transformations that are applied to the texture coordinates

of a mesh when they are used to fetch from the texture

map.

Animation 0 A Texture structure may contain animation tracks that

are applied to the texture coordinate transformations.

Hierarchy

A Texture structure may be contained inside the following structures.

Containing Structure Description

Material Texture structures can be contained inside a Material structure

to specify material attributes.

LightObject A single Texture structure can be contained inside a

LightObject structure to specify a projected texture for a spot

light.

68 OpenGEX Specification

Time

The Time structure contains key time data in an animation track.

Properties

The properties listed in the following table may be specified for a Time structure.

Property Type Default Description

curve string " linear " The function defining the interpolation curve.

The curve property specifies the manner in which time values are interpolated and must have one of

the following values.

Å A value of " linear " indicates that times are interpolated linearly.

Å A value of " bezier " indicates that times are interpolated on a one-dimensional cubic Bézier curve.

See the Track structure for information about calculating interpolated key values.

Structure Data

The following structures may compose the data stored inside a Time structure.

Substructure Min Max Description

Key 1 3 A Time structure must contain one or three key

substructures, depending on the curve property, holding

the time curve data.

The Time structure must contain a Key structure whose kind property is "value" . The data inside

this Key structure must consist of a monotonically increasing sequence of time values.

If the curve property is " bezier " , then the Time structure must contain two additional Key

structures whose kind properties are " - control" and "+control" . These hold the incoming and

outgoing control points for the time curve, respectively. Each incoming control point must be less than

its corresponding time value but greater than the outgoing control point for the preceding time value, if

any. Likewise, each outgoing control point must be greater than its corresponding time value but less

than the incoming control point for the succeeding time value, if any.

Time 69

Hierarchy

A Time structure may be contained inside the following structures.

Containing Structure Description

Track A single Time structure must be contained inside every Track

structure.

70 OpenGEX Specification

Track

The Track structure contains animation key data for a single transformation structure (Transform ,

Translation , Rotation , and Scale) or a single Morph Weight structure. The key data is

separated into time and value curves having an equal number of data points.

Interpolation

Given a time t that falls between two key times 1t and 2t stored in the Time structure, a parameter s in

the range [)0,1 can be calculated and used to interpolate between the corresponding values 1v and 2v

stored in the Value structure.

If the curve property for the Time structure is "linear" , then the parameter s is given by

 () 1

2 1

t t
s t

t t

-
=
-

.

If the curve property for the Time structure is " bezier " , then the parameter s must be that for

which the one-dimensional cubic Bézier polynomial produces the time t. This can be determined by

solving the equation

 () () ()
3 2 2 3

1 1 2 21 3 1 3 1 0s t s s c s s c s t t- + - + - + - =,

where 1c is the outgoing control point (in the Key structure with a kind property of "+control")

corresponding to the time 1t , and 2c is the incoming control point (in the Key structure with a kind

property of " - control") corresponding to the time 2t . Because the times and control points are

required to satisfy 1 1 2 2t c c t< < <, there is only one real solution, and it can quickly be found through

an iterative application of Newtonôs method, beginning with ()0s s t= as in the linear case. Refined

values of s are given by the formula

() () ()

() () ()

3 2
2 2 1 1 2 1 1 1 1 1

1 2
2 2 1 1 2 1 1 1 1

3 3 3 2 3

3 3 3 6 2 3

i i i
i i

i i

t c c t s c c t s c t s t t
s s

t c c t s c c t s c t
+

- + - + - + + - + -
= -

- + - + - + + -
.

Once the parameter s has been calculated, it is exclusively used to interpolate key values, and the time

t is no longer needed.

If the curve property for the Value structure is " constant " , then the interpolated value v is

trivially given by () 1v s v= .

If the curve property for the Value structure is "linear" , then the interpolated value v is given

by

 ()()1 21v s s v sv= - +.

If the curve property for the Value structure is " bezier " , then v is given by

 ()() () ()
3 2 2 3

1 1 2 21 3 1 3 1v s s v s s p s s p s v= - + - + - +,

Track 71

where 1p is the outgoing control point (in the Key structure with a kind property of "+control")

corresponding to the value 1v , and 2p is the incoming control point (in the Key structure with a kind

property of " - control") corresponding to the value 2v .

If the curve property for the Value structure is " tcb " , then v is given by the Hermite curve

 ()() () () ()
22 3 2 2

1 2 1 21 3 2 3 2 1 1v s s s v s s v s s u s s u= - + + - + - + -,

where 1u and 2u are tangents derived from tension, continuity, and bias parameters it, ic, and ib

corresponding to each key value iv . These tangents are given by the formulas

()()()

()
()()()

()1 1 1 1 1 1
1 1 0 2 1

1 1 1 1 1 1

2 2
u v v v v

t c b t c b- + + - - -
= - + -

and

()()()

()
()()()

()2 2 2 2 2 2
2 2 1 3 2

1 1 1 1 1 1

2 2
u v v v v

t c b t c b- - + - + -
= - + -.

The value 0v is the one preceding 1v in the Key structure. If 1v is the first key value, then 0 1v v= , and the

first term of the formula for 1u is eliminated. Likewise, the value 3v is the one following 2v in the Key

structure. If 2v is the last key value, then 3 2v v= , and the second term of the formula for 2u is eliminated.

The tension, continuity, and bias parameters are always scalars and are stored alongside the key values

(inside the Value structure) in additional Key structures having kind properties of "tension" ,

"continuity" , and "bias" .

The key values iv in all cases, and the control points ip in the case of Bézier curves, can be scalars or

vectors. For vectors, interpolated values are calculated componentwise with the above formulas.

Properties

The properties listed in the following table may be specified for a Track structure.

Property Type Default Description

ta rget ref The target structure of the animation track.

The target property is required and specifies the particular structure that is animated by the track.

The target structure must be a Transform , Translation , Rotation , Scale , or

Morph Weight structure.

72 OpenGEX Specification

Structure Data

The following structures may compose the data stored inside a Track structure.

Substructure Min Max Description

Time 1 1 A Track structure must contain a set of time keys.

Value 1 1 A Track structure must contain a set of value keys.

A Track structure must always contain exactly one Time structure and one Value structure. These

each contain one or more Key structures that contain the actual animation data. The number of time

keys and the number of values keys must be equal.

Hierarchy

A Track structure may be contained inside the following structures.

Containing Structure Description

Animation Track structures can be contained inside an Animation structure.

Transform 73

Transform

The Transform structure holds one or more 4 4³ transformation matrices. In the cases that a

Transform structure is contained inside any type of node structure, a Texture structure, or a Skin

structure, it must contain a single matrix. In the case that a Transform structure is contained inside a

Skeleton structure, is must contain an array of matrices with one entry for each bone referenced by

the skeleton.

When contained inside a node structure, a Transform structure can be the target of a track stored

inside an Animation structure.

Properties

The properties listed in the following table may be specified for a Transform structure.

Property Type Default Description

object bool false Whether the transform is applied to the object only.

The object property specifies whether the transformation matrix applies to the node or to the object.

See the Node structure for a discussion of node transforms and object transforms. The object property

is ignored for Transform structures not contained inside a type of node structure.

Structure Data

The following structures may compose the data stored inside a Transform structure.

Substructure Min Max Description

float[16] 1 1 A Transform structure must contain one float

substructure holding the value of the transformation

matrix.

The entries of the transformation matrix are stored in column-major order such that the index of each

entry in the float[16] array is given by the following illustration.

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

è ø
é ù
é ù
é ù
é ù
ê ú

74 OpenGEX Specification

Hierarchy

A Transform structure may be contained inside the following structures.

Containing Structure Description

Node

BoneNode

GeometryNode

CameraNode

LightNode

Transform structures can be contained inside any node structure.

Skin A single Transform structure can be contained inside a Skin

structure to specify a bind-pose transform for the mesh.

Skeleton A single Transform structure must be contained inside a

Skeleton structure to specify an array of bind-pose transforms for

the bones.

Texture Transform structures can be contained inside a Texture structure

to specify texture coordinate transformations.

Translation 75

Translation

The Translation structure holds a translation transformation in one of several possible variants..

When contained inside a node structure, a Translation structure can be the target of a track stored

inside an Animation structure.

Properties

The properties listed in the following table may be specified for a Translation structure.

Property Type Default Description

kind string " xyz " The kind of translation.

object bool false Whether the translation is applied to the object only.

The kind property specifies the particular variant of the translation transformation, and it must have

one of the following values.

Å A value of "x" , "y" , or "z" indicates that the translation occurs along only the x, y, or z axis. For

these variants, the data contained inside the Translation structure must be a single floating-point

value representing the displacement. For a particular displacement d, a translation along the x, y, or

z axis is converted to a 4 4³ matrix by using the following formulas.

 x

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

dè ø
é ù
é ù=
é ù
é ù
ê ú

M y

1 0 0 0

0 1 0

0 0 1 0

0 0 0 1

d

è ø
é ù
é ù=
é ù
é ù
ê ú

M z

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

d

è ø
é ù
é ù=
é ù
é ù
ê ú

M

Å A value of " xyz " indicates that the translation occurs along all three coordinate axes. For this

variant, the data contained inside the Translation structure must be a single array of three

floating-point values representing the displacement along each of the x, y, and z axes. For a particular

displacement D, a translation is converted to a 4 4³ matrix by using the following formula.

 xyz

1 0 0

0 1 0

0 0 1

0 0 0 1

x

y

z

D

D

D

è ø
é ù
é ù=
é ù
é ù
ê ú

M

The object property specifies whether the translation transformation applies to the node or to the

object. See the Node structure for a discussion of node transforms and object transforms.

76 OpenGEX Specification

Structure Data

The following structures may compose the data stored inside a Translation structure.

Substructure Min Max Description

float

float[3]

1 1 A Translation structure must contain one float

substructure holding the value of the translation.

If the kind property is "x" , "y" , or "z" , then the Translation structure must contain a single

floating-point value representing the displacement along one axis. If the kind property is "xyz" , then

the Translation structure must contain a single array of three floating-point values representing the

displacement along all three axes.

Hierarchy

A Translation structure may be contained inside the following structures.

Containing Structure Description

Node

BoneNode

GeometryNode

CameraNode

LightNode

Translation structures can be contained inside any node structure.

Texture Translation structures can be contained inside a Texture

structure to specify texture coordinate transformations.

Value 77

Value

The Value structure contains key value data in an animation track.

Properties

The properties listed in the following table may be specified for a Value structure.

Property Type Default Description

curve string " linear " The function defining the interpolation curve.

The curve property specifies the manner in which values are interpolated and must have one of the

following values.

Å A value of " constant " indicates that values are not interpolated but remain constant until the next

key time.

Å A value of " linear " indicates that values are interpolated linearly.

Å A value of " bezier " indicates that values are interpolated on a cubic Bézier curve.

Å A value of " tcb " indicates that values are interpolated on a tension-continuity-bias (TCB) spline.

See the Tr ack structure for information about calculating interpolated key values.

Structure Data

The following structures may compose the data stored inside a Value structure.

Substructure Min Max Description

Key 1 4 A Value structure must contain one, three, or four key

substructures, depending on the curve property, holding

the value curve data.

The Value structure must contain a Key structure whose kind property is "value" . The data inside

this Key structure must have the same dimensionality as the target of the enclosing Track structure.

If the curve property is " bezier " , then the Value structure must contain two additional Key

structures whose kind properties are " - control" and "+control" . These hold the incoming and

outgoing control points for the value curve, respectively, and they must have the same dimensionality

as the key values.

If the curve property is " tcb " , then the Value structure must contain three additional Key

structures whose kind properties are " tension " , " bias " , and " continuity " . The data

contained inside these three Key structures is always scalar.

78 OpenGEX Specification

Hierarchy

A Valu e structure may be contained inside the following structures.

Containing Structure Description

Track A single Value structure must be contained inside every Track

structure.

VertexArray 79

VertexArray

The VertexArray structure contains array data for a single vertex attribute in a mesh. See the Mesh

structure for information about how arrays are used in a mesh.

Properties

The properties listed in the following table may be specified for a VertexArray structure.

Property Type Default Description

attrib string The vertex attribute.

morph unsigned_ int32 0 The morph target index.

The attrib property specifies the meaning of the data contained in the vertex array. Its value must

be a string containing a legal OpenDDL identifier optionally followed by an unsigned integer enclosed

in brackets that specifies an index. If the index is omitted, then it is equivalent to specifying an index

of 0. For example, the attributes position and posit ion[0] both mean the primary vertex

position, but the attribute position[1] means a secondary vertex position. The vertex array

attrib values are defined by this specification are shown in Table 2.2.

Table 2.2. This table lists the vertex attribute types defined by OpenGEX. Each attribute name may optionally be

followed by an index number inside brackets. If the index number is omitted, then it is implicitly zero.

Attribute Meaning

" position " The vertex position.

" normal " The normal vector.

" tangent " The tangent vector aligned to the x texture coordinate.

" bitangent " The tangent vector aligned to the y texture coordinate.

" color " The vertex color.

" texcoord " The texture coordinates.

A writer may include VertexArray structures with application-defined attrib values. If a reader

encounters any of these for which the attrib value is either unsupported or unrecognized, then the

vertex array should be ignored.

Normal arrays, tangent arrays, and bitangent arrays should generally contain three-dimensional data. If

a tangent array contains four-dimensional data, then the fourth component should contain the sign of

Ø ØT B N, where T, B, and N are the three-dimensional entries for the same vertex taken from

corresponding tangent, bitangent, and normal arrays.

80 OpenGEX Specification

The texcoord property of the Texture structure specifies which texture coordinate array to use

when accessing the texture map. If multiple tangent and bitangent arrays are present, they should

correspond to the same numbered texture coordinate arrays so that a matching tangent frame can be

determined for each set of texture coordinates.

The morph property specifies the index of the morph target to which the vertex array belongs. A mesh

may contain multiple vertex arrays having the same value for the attrib property only if they have

different values for their morph properties. A complete morph target having the index k is composed

of the following two sets of vertex arrays:

Å All of the vertex arrays for which the morph property has a value of k.

Å For any value of the attrib property that is specified for a vertex array of any morph target but it

not specified for a vertex array of the morph target having index k, the vertex array having the same

value for the attrib property and the minimum value for the morph property (which may be the

default value of 0).

The blending weights applied to the morph targets are specified inside a Morph structure contained in

a GeometryNode structure that references a GeometryObject structure containing the mesh. For

any geometry node not containing any Morph Weight structures but referencing a geometry object

containing multiple morph targets, all vertex arrays for which the morph property is not 0 should be

ignored.

Structure Data

The following structures may compose the data stored inside a VertexArray structure.

Substructure Min Max Description

half

half[2]

half[3]

half[4]

float

float[2]

float[3]

float[4]

double

double[2]

double[3]

double[4]

1 1 A VertexArray structure must contain one

substructure holding the vertex array data, and it must

have a floating-point primitive data type.

The data for each type of vertex array attribute may consist of an array of floating-point values or an

array of subarrays containing two, three, or four values each. When fewer than four components are

specified in the data for any vertex array, the second, third, and fourth components shall implicitly be

given the values 0, 0, and 1, respectively.

VertexArray 81

Hierarchy

A VertexArray structure may be contained inside the following structures.

Containing Structure Description

Mesh VertexArray structures can be contained inside a Mesh structure.

 83

A

OpenDDL Reference

The Open Data Description Language (OpenDDL) is a generic text-based language that is designed to

store arbitrary data in a concise human-readable format. It can be used as a means for easily exchanging

information among many programs or simply as a method for storing a program's data in an editable

format. Each unit of data in an OpenDDL file has an explicitly specified type, and this eliminates

ambiguity and fragile inferencing methods that can impact the integrity of the data. This strong typing

is further supported by the specification of an exact number of bits required to store numerical data

values when converted to a binary representation.

The data structures in an OpenDDL file are organized as a collection of trees (also known as a forest).

The language includes a built-in mechanism for making references from one data structure to any other

data structure, effectively allowing the contents of a file to take the form of a directed graph.

As a foundation for higher-level data formats, OpenDDL is intended to be minimalistic. It assigns no

meaning whatsoever to any data beyond its hierarchical organization, and it imposes no restrictions on

Figure A.1. An OpenDDL file contains a sequence of structures that follow the production rule

shown here.

data- type name { data-list }

[intege r-lite ral] name { data -ar ray-list }

identifier name (proper ty

,

) { structure }

structure

84 OpenGEX Specification

the composition of data structures. Semantics and validation are left to be defined by specific higher-

level formats derived from OpenDDL. The core language is designed to place as little burden as

possible on readers so that it's easy to write programs that understand OpenDDL.

The OpenDDL syntax is illustrated in the ñrailroad diagramsò found throughout this appendix, and it is

designed to feel familiar to C/C++ programmers. Whitespace never has any meaning, so OpenDDL

files can be formatted in any manner preferred.

Structures

An OpenDDL file is composed of a sequence of structures. A single structure consists of a type

identifier followed by an optional name, an optional list of properties, and then its data payload enclosed

in braces, as shown in Figure A.1. There are two general types of structures, those with built-in types

that contain primitive data such as integers or strings, and those that represent custom data structures

defined by a derivative file format. As an example, suppose that a derivative file format defined a data

type called Vertex that contains the 3D coordinates of a single vertex position. This could be written

as follows.

Vertex

{

 float {1.0, 2.0, 3.0}

}

The Vertex identifier represents a custom data structure defined by the derivative file format, and it

contains another structure of type float , which is a built-in primitive data type. The data in the float

structure consists of the three values 1.0, 2.0, and 3.0. In general, raw data values in a primitive data

structure are specified as a homogeneous comma-separated list of unbounded size, as shown in

Figure A.2.

The raw data inside a primitive data structure may also be specified as a comma-separated list of

subarrays of values, as shown in Figure A.3. The size of each subarray is specified by placing a positive

integer value inside brackets immediately following the primitive type identifier, preceding the

structureôs name if it has one. Each value contained in the primitive data structure is then written as a

comma-separated array of values enclosed in braces. As an example, suppose that a VertexArray

structure expects to contain an array of 3D positions, each of which is specified as an array of three

floating-point values. This would be written as follows.

VertexArray

{

 float [3]

 {

 {1.0, 2.0, 3.0}, {0.5, 0.0, 0.5}, {0.0, - 1.0, 4.0}

 }

}

OpenDDL Reference 85

Figure A.2. The data payload of a primitive data

structure is a homogeneous array of values

separated by commas.

Figure A.3. A data payload may consist of an array

of subarrays separated by commas. Each subarray

contains a homogeneous array of values enclosed in

parentheses.

The number of elements in each subarray must always match the array size specified inside the brackets

following the primitive type identifier. If the array size is one, then the braces are still required.

Note that a reader would use its knowledge of the already-parsed data type to choose only a single rule

in Figures A.2 and A.3, as opposed to allowing any of the types of data to appear inside the braces. (It

is also not possible to disambiguate among the numerical data types without some extra information.)

bool-lite ral

,

intege r-lite ral

,

floa t-lite ral

,

string-lite ral

,

reference

,

data- type

,

data-list

{ bool-lite ral

,

}

,

{ intege r-lite ral

,

}

,

{ floa t-lite ral }

,

{ string-lite ral

,

}

,

{ reference

,

}

,

{ data- type

,

}

,

data-array-list

86 OpenGEX Specification

This restriction could be expressed in the grammar, but doing so would come at a significant cost in

conciseness.

Primitive Data Types

OpenDDL defines the 15 primitive data types shown in Figure A.4, and the exact meaning of each of

these types is described in Table A.3.

When used as the identifier for a data structure, each entry in the Table A.3 indicates that the structure

is a primitive structure and its data payload is composed of an array of literal values. Primitive structures

cannot have substructures.

Table A.3. These are the 15 primitive data types defined by OpenDDL.

Type Description

bool A boolean type that can have the value true or false .

int8 An 8-bit signed integer that can have values in the range [72- , 72 1-].

int16 A 16-bit signed integer that can have values in the range [152- , 152 1-].

int32 A 32-bit signed integer that can have values in the range [312- , 312 1-].

int64 A 64-bit signed integer that can have values in the range [632- , 632 1-].

unsigned_i nt8 An 8-bit unsigned integer that can have values in the range [0, 82 1-].

unsigned_int16 A 16-bit unsigned integer that can have values in the range [0, 162 1-].

unsigned_int32 A 32-bit unsigned integer that can have values in the range [0, 322 1-].

unsigned_int64 A 64-bit unsigned integer that can have values in the range [0, 642 1-].

half A 16-bit floating-point type conforming to the standard S1-E5-M10

format.

float A 32-bit floating-point type conforming to the standard S1-E8-M23

format.

double A 64-bit floating-point type conforming to the standard S1-E11-M52

format.

string A double-quoted character string with contents encoded in UTF-8.

ref A sequence of structure names, or the keyword null .

type A type whose values are identifiers naming types in the first column of

this table.

OpenDDL Reference 87

Figure A.4. These are the 15 primitive data types defined by OpenDDL.

There is no implicit type conversion in OpenDDL. Data values belonging to a primitive structure must

be parsable as literal values corresponding to the primitive data type.

The type data type is convenient for schemas built upon OpenDDL itself in order to define valid type

usages in derivative file formats.

Identifiers

An identifier in OpenDDL is a sequence of characters composed from the set {AïZ, aïz , 0ï9, _}, as

shown in Figure A.5. That is, an identifier is composed of uppercase and lowercase roman letters, the

numbers 0ï9, and the underscore. An identifier cannot begin with a number.

bool

int8

int16

int32

int64

unsigned_int8

unsigned_int16

unsigned_int32

unsigned_int64

half

float

double

string

ref

type

data-type

88 OpenGEX Specification

Figure A.5. An identifier is composed of uppercase and lowercase roman letters, the numbers

0ï9, and the underscore.

Identifiers are used to identify data structure types, structure names, and properties. The 15 primitive

data types shown in Figure A.4 are reserved as structure types, but they can still be used as structure

names and property identifiers.

Names

Any structure in an OpenDDL file may have a name. Names are used to reference other structures from

within primitive data structures or through property values. A name can be a global name or a local

name. Each global name must be unique among all global names used inside the file containing it, and

each local name must be unique among all local names used by its siblings in the structure tree. Local

names can be reused inside different structures, and they can duplicate global names.

As shown in Figure A.6, a name is composed of either a dollar sign character ($) or percent sign

character (%) followed by an identifier with no intervening whitespace. A name that begins with a dollar

sign is a global name, and a name that begins with a percent sign is a local name. A name is assigned

to a structure by placing it right after the structure identifier (and no whitespace is technically required

before the dollar sign), as in the following example.

Vertex $apex

{

 float {1.0, 2.0, 3.0}

}

This structure can be referenced from elsewhere in the file by using the name $apex .

References

A reference value is used to form a link to a specific structure within an OpenDDL file. If the target

structure has a global name, then the value of a reference to it is simply the name of the structure,

[AïZ]

[aïz]

_

[0ï9]

[AïZ]

[aïz]

_

identifier

OpenDDL Reference 89

Figure A.6. A name is composed of either a dollar sign character ($) or a percent sign character

(%) followed by an identifier with no intervening whitespace.

Figure A.7. A reference value is either the name of a structure or the keyword null . A

structure may be identified by a sequence of names providing the path to the target along a

branch of the structure tree.

beginning with the dollar sign character. If the target structure has a local name, then the value of a

reference to it depends on the scope in which the reference appears. If the reference appears in a

structure that is a sibling of the target structure, then its value is the name of the target structure,

beginning with the percent sign character. Otherwise, the value of the reference consists of a sequence

of names, as shown in Figure A.7, that identify a sequence of structures along a branch in the structure

tree. Only the first name in the sequence can be a global name, and the rest must be local names.

The value of a reference can also be keyword null to indicate that a reference has no target structure.

In the following example, where the Person , Name, and Friends data types are defined by some

derivative format, references are used to link a data structure representing a person to the data structures

representing his friends.

Person $c harles

{

 Name { st ring {"Charles"}}

 Friends { ref {$alice, $bob} }

}

Person $alic e {...}

Person $bob {...}

$

%

identifier

name

name % identifier

null

reference

90 OpenGEX Specification

Properties

A custom data structure in a derivative format may define one or more properties that can be specified

separately from the data that the structure contains. Properties are written in a comma-separated list

inside parentheses following the name of the structure (or just following the structure identifier if there

is no name). As shown in Figure A.8, each property is composed of a property identifier followed by

an equals character (=) and the value of the property. The type of the propertyôs value must be specified

by some external source of information such as a schema or program associated with a derivative

format. For example, a string cannot be specified for a property that was expecting an integer. The

specified type determines which rule in Figure A.8 is applied, and a mismatch must be detected at the

time that the property is parsed.

As an example, suppose that a data structure called Mesh defined a property called lod that takes an

integer representing the level of detail to which its contents belong. This property would be specified

as follows.

Mesh (lod = 2)

{

 ...

}

If another property called part existed and accepted a string (perhaps to identify a body part), then

that property could be added to the list as follows.

Mesh (lod = 2, part = "Left Hand")

{

 ...

}

The order in which properties are listed is insignificant. Derivative file formats may require that certain

properties always be specified. Optional properties must always have a default value or be specially

handled as being in an unspecified state. The same property can be specified more than once in the

same property list, and in such a case, all but the final value specified for the same property must be

ignored.

The syntax does not allow primitive data types to have a property list. (See Figure A.1.)

Booleans

A boolean value is one of the keywords false or true , as shown in Figure A.9.

Integers

The language allows integers to be specified as a decimal number, a hexadecimal number, an octal

number, a binary number, or a single-quoted character literal.

OpenDDL Reference 91

Figure A.8. A property is composed of an identifier followed by an equals character (=) and

the value of the property.

Figure A.9. A boolean value is either the keyword false or the keyword true .

Between any two consecutive digits of each type of integer literal, a single underscore character may

be inserted as a separator to enhance readability. The presence of underscore characters and their

positions have no significance, and they do not affect the value of a literal.

A decimal literal is simply composed of a sequence of numerical digits, as shown in Figure A.10, and

leading zeros are permitted.

A hexadecimal literal is specified by prefixing a number with 0x or 0X, as shown in Figure A.12. This

is followed, without any intervening whitespace, by any number of hexadecimal digits that don't cause

the underlying integer type to overflow. As shown in Figure A.11, the use of the letters AïF in a

hexadecimal literal is not case sensitive.

An octal literal is specified by prefixing a number with 0o or 0O, as shown in Figure A.13. This is

followed, without any intervening whitespace, by any number of digits between 0 and 7, inclusive, that

don't cause the underlying integer type to overflow.

A binary literal is specified by prefixing a number with 0b or 0B, as shown in Figure A.14. This is

followed, without any intervening whitespace, by any number of zeros and ones that don't cause the

underlying integer type to overflow.

identifier = bool-lite ral

intege r-lite ral

floa t-lite ral

string-lite ral

reference

data- type

property

false

true

bool-literal

92 OpenGEX Specification

Figure A.10. A decimal literal is any sequence of numerical digits.

Figure A.11. A hexadecimal digit is a numerical digit 0ï9 or a letter AïF (with no regard

for case).

Figure A.12. A hexadecimal literal starts with 0x or 0X and continues with one or more

hexadecimal digits.

Figure A.13. An octal literal starts with 0o or 0O and continues with one or more octal digits.

[0ï9]

_

decimal-literal

[0ï9]

[AïF]

[aïf]

hex-digit

0x

0X

hex-digit

_

hex-literal

0o

0O

[0ï7]

_

octal-literal

OpenDDL Reference 93

Figure A.14. A binary literal starts with 0b or 0B and continues with one or more binary digits.

A character literal is specified by a sequence of printable ASCII characters enclosed in single quotes,

as shown in Figure A.16. OpenDDL supports the escape sequences listed in Table A.4 and illustrated

in Figure A.15. Escape sequences may be used to generate control characters or arbitrary byte values.

The single quote (') and backslash (\) characters cannot be represented directly and must be encoded

with escape sequences. The \ x escape sequence is always followed by exactly two hexadecimal digits.

Each character (after resolving escape sequences) corresponds to exactly one byte in the resulting

integer value, and the right-most character corresponds to the least significant byte.

Table A.4. These are the escape sequences supported by OpenDDL for character literals.

Escape Sequence ASCII Code Description

\ " 0x22 Double quote

\ ' 0x27 Single quote

\ ? 0x3F Question mark

\ \ 0x5C Backslash

\ a 0x07 Bell

\ b 0x08 Backspace

\ f 0x0C Formfeed

\ n 0x0A Newline

\ r 0x0D Carriage return

\ t 0x09 Horizontal tab

\ v 0x0B Vertical tab

\ xhh ï Byte value specified by the two hex digits hh

0b

0B

0

1

_

binary-literal

94 OpenGEX Specification

Figure A.15. An escape character consists of a backslash (\) followed by a single character

code. In the case of the \ x character code, the escape sequence includes exactly two additional

hexadecimal digits.

Figure A.16. A character literal is composed of a sequence of printable ASCII characters

enclosed in single quotes. The single quote (') and backslash (\) characters cannot be

represented directly and must be encoded with escape sequences.

\"

\'

\?

\\

\a

\b

\f

\n

\r

\t

\v

\x hex-digit hex-digit

escape-char

' [U+0020ïU+0026]

[U+0028ïU+005B]

[U+005DïU+007E]

escape-char

'

char-literal

OpenDDL Reference 95

Figure A.17. An integer literal is composed of an optional sign followed by a decimal,

hexadecimal, octal, binary, or character literal.

An integer literal is composed of an optional plus or minus sign followed by a decimal, hexadecimal,

octal, binary, or character literal, as shown in Figure A.17.

In the following example, the same 32-bit unsigned integer value is repeated five times using different

literal types: a decimal literal, a hexadecimal literal, an octal literal, a binary literal, and a character

literal.

unsigned_int32

{

 1094861636, 0x41 424344, 0o10120441504 ,

 0b01000001010000100100001101000100,

 'ABCD'

}

Floating-Point Numbers

The language allows floating-point numbers to be specified as a decimal number with or without a

decimal point and fraction, and with or without a trailing exponent, as shown in Figure A.18. When a

fraction and/or exponent is present, the number format is the same as defined in C/C++. Floating-point

numbers may also be specified as hexadecimal, octal, or binary literals representing the underlying bit

pattern of the number. This is particularly useful for lossless exchange of floating-point data since

round-off errors possible in the conversion to and from a decimal representation are avoided. Using a

hexadecimal, octal, or binary representation is also the only way to specify a floating-point infinity or

not-a-number (NaN) value.

As with integer literals, an underscore character may be inserted between any two consecutive

numerical digits in a floating-point literal to enhance readability. Underscore characters are ignored and

do not affect the value of a literal.

+

ī

decimal-lite ral

hex-lite ral

octal-lite ral

binar y-lite ral

cha r-lite ral

integer-literal

96 OpenGEX Specification

Figure A.18. A floating-point literal is composed of an optional sign followed by a number

with or without a decimal point and an optional exponent. Hexadecimal and binary literals

representing the underlying bit pattern are also accepted.

Strings

Strings in OpenDDL are composed of a sequence of characters enclosed in double quotes, as shown in

Figure A.19. Unicode values (encoded as UTF-8) in the following ranges may be directly included in

a string literal:

Å [U+0020, U+0021]

Å [U+0023, U+005B]

Å [U+005D, U+007E]

Å [U+00A0, U+D7FF]

Å [U+E000, U+FFFD]

Å [U+010000 , U+10FFFF]

This is the only place where non-ASCII characters are allowed other than in comments.

A string may contain the escape sequences defined for character literals (see Figure A.15). The double

quote (") and backslash (\) characters cannot be represented directly and must be encoded with escape

sequences. String literals also support the \ u escape sequence, which specifies a nonzero Unicode

character using exactly four hexadecimal digits immediately following the u. In order to support

Unicode characters outside the Basic Multilingual Plane (BMP), a six-digit code can be specified by

+

ï

[0ï9]

_

. [0ï9]

_

. [0ï9]

_

e

E

+

ï

[0ï9]

_

hex-lite ral

octal-lite ral

binar y-lite ral

float-literal

