

Open Game Engine Exchange
Specification

Version 3.0

by Eric Lengyel

Terathon Software LLC
Lincoln, California

Open Game Engine Exchange Specification
Version 3.0

ISBN-13: 978-0-9858117-8-5

Copyright © 2021, by Eric Lengyel

Published by Terathon Software LLC
www.terathon.com

OpenGEX website: opengex.org

 iii

Contents

1 Introduction .. 1

2 Structure Specification .. 7

Animation .. 9

Atten ... 12

BoneCountArray .. 15

BoneIndexArray ... 16

BoneNode .. 17

BoneRefArray .. 18

BoneWeightArray .. 19

CameraNode .. 20

CameraObject .. 22

Clip ... 23

Color .. 25

GeometryNode ... 26

GeometryObject ... 28

IndexArray ... 30

Key ... 32

LightNode .. 34

LightObject .. 36

Material .. 39

MaterialRef .. 42

Mesh ... 43

iv OpenGEX Specification

Metric ... 46

Morph ... 50

MorphWeight .. 52

Name .. 54

Node ... 55

ObjectRef .. 57

Param .. 58

Rotation .. 59

Scale ... 62

Skeleton .. 64

Skin ... 65

Spectrum ... 68

Texture .. 73

Time .. 76

Track ... 78

Transform ... 81

Translation .. 84

Value ... 86

VertexArray .. 88

A OpenDDL Reference .. 91

B Revision History ... 115

 1

1
Introduction

�e Open Game Engine Exchange (OpenGEX) format is a text-based file format designed to facilitate
the transfer of complex scene data between applications such as modeling tools and game engines. �e
OpenGEX format is built upon the data structure concepts defined by the Open Data Description
Language (OpenDDL), a generic language for the storage of arbitrary data in human-readable format.
�is specification provides a description of the data structures defined by OpenGEX, and it includes an
OpenDDL reference in Appendix A.

At the most basic level, an OpenGEX file consists of a node hierarchy, a set of objects, a set of materials,
and some additional information about global units and axis orientation. �e various node, object, and
material structures contain all of the details such as geometric data and animation tracks within a
hierarchy of additional types of structures defined by OpenGEX. �e relationships among all of these
structures are shown in Figure 1.1.

Nodes
�e node hierarchy represents the overall organization of the scene. An OpenGEX file may contain any
number of nodes at the root level, and each node may contain any number of child nodes. �e nodes
form tree structures in which each node can have at most one parent node.

Each node in the hierarchy may have data structures containing transformations and animation tracks.
Nodes representing geometries, lights, and cameras in the scene have references to other structures
containing the geometric data and various parameters for those objects. Multiple nodes may reference
the same object to achieve instancing.

Geometry nodes may have one or more references to materials containing information about surface
shading. Materials may be referenced by any number of geometry nodes.

Objects
�e data belonging to geometries, lights, and cameras without regard for placement in the overall scene
is stored in a flat set of object structures. An OpenDDL reference is used to make the connection
between each node in the scene and the object that it instances.

2 OpenGEX Specification

Figure 1.1. �is diagram illustrates the relationships among the structures defined by the
OpenGEX format. �e purple arrows point from each of the structures to the specific
substructures they are allowed to contain. (Substructures that are simply OpenDDL data types
have been omitted.) �e circular orange nodes serve only to combine paths in order to simplify
the diagram where common relationships exist.

Introduction 3

Geometry objects contain a set of one or more mesh structures that each contain vertex and primitive
information as well as optional skinning data. Light objects contain information about a light’s color,
brightness, and attenuation functions. Camera objects contain information about a camera’s field of
view and clipping planes.

Materials
A material structure contains basic information about various colors and texture maps used by a surface
shader. Texture maps may include texture coordinate transformations and animation tracks that affect
those transformations.

Animation
Node transformations, morph weights, and texture coordinate transformations may all be animated
through the inclusion of Animation structures inside Node structures and Texture structures. A
complete transformation may be decomposed into multiple components, such as rotations about one or
more axes followed by a translation, and an animation may contain several tracks that animate each
component separately. An OpenGEX file may contain multiple animation clips, and each Animation
structure identifies which clip it belongs to. Information about a complete animation clip is stored inside
a Clip structure that can appear at the top level of the file.

Extensions
OpenDDL requires that readers ignore any structures and properties having an unrecognized identifier
without producing an error. �is allows extensions to be implemented through new structure types and
property values without breaking readers that are not aware of them.

Example
A very simple example of a complete OpenGEX file describing a green cube is shown in Listing 1.1. It
begins with a pair of Metric structures that define the units of distance measurement and the global up
direction. �ose are followed by a single GeometryNode structure that provides the name and transform
for the cube. �e geometric data for the cube is stored in the GeometryObject structure that is
referenced by the geometry node. �e geometry object structure contains a single mesh of triangle
primitives that includes per-vertex positions, normals, and texture coordinates. Finally, the Material
structure at the end of the file contains the green diffuse reflection color.

4 OpenGEX Specification

Listing 1.1. �is is an example of a near-minimal OpenGEX file containing the data for a green cube. It
consists of a single geometry node that references a geometry object and a material.

Metric (key = "distance") {float {0.01}}
Metric (key = "up") {string {"z"}}

GeometryNode $node1
{
 Name {string {"Cube"}}
 ObjectRef {ref {$geometry1}}
 MaterialRef {ref {$material1}}

 Transform
 {
 float[12]
 {
 {1.0, 0.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 0.0, 1.0,
 50.0, 50.0, 0.0}
 }
 }
}

GeometryObject $geometry1 // Cube
{
 Mesh (primitive = "triangles")
 {
 VertexArray (attrib = "position")
 {
 float[3] // 24
 {
 {-50.0, -50.0, 0.0}, {-50.0, 50.0, 0.0},
 {50.0, 50.0, 0.0}, {50.0, -50.0, 0.0},
 {-50.0, -50.0, 100.0}, {50.0, -50.0, 100.0},
 {50.0, 50.0, 100.0}, {-50.0, 50.0, 100.0},
 {-50.0, -50.0, 0.0}, {50.0, -50.0, 0.0},
 {50.0, -50.0, 100.0}, {-50.0, -50.0, 100.0},
 {50.0, -50.0, 0.0}, {50.0, 50.0, 0.0},
 {50.0, 50.0, 100.0}, {50.0, -50.0, 100.0},
 {50.0, 50.0, 0.0}, {-50.0, 50.0, 0.0},
 {-50.0, 50.0, 100.0}, {50.0, 50.0, 100.0},
 {-50.0, 50.0, 0.0}, {-50.0, -50.0, 0.0},
 {-50.0, -50.0, 100.0}, {-50.0, 50.0, 100.0}
 }
 }

Introduction 5

 VertexArray (attrib = "normal")
 {
 float[3] // 24
 {
 {0.0, 0.0, -1.0}, {0.0, 0.0, -1.0}, {0.0, 0.0, -1.0},
 {0.0, 0.0, -1.0}, {0.0, 0.0, 1.0}, {0.0, 0.0, 1.0},
 {0.0, 0.0, 1.0}, {0.0, 0.0, 1.0}, {0.0, -1.0, 0.0},
 {0.0, -1.0, 0.0}, {0.0, -1.0, 0.0}, {0.0, -1.0, 0.0},
 {1.0, 0.0, 0.0}, {1.0, 0.0, 0.0}, {1.0, 0.0, 0.0},
 {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 1.0, 0.0},
 {0.0, 1.0, 0.0}, {0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0},
 {-1.0, 0.0, 0.0}, {-1.0, 0.0, 0.0}, {-1.0, 0.0, 0.0}
 }
 }

 VertexArray (attrib = "texcoord")
 {
 float[2] // 24
 {
 {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}, {0.0, 0.0},
 {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0},
 {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0},
 {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0},
 {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0},
 {0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}
 }
 }

 IndexArray
 {
 uint32[3] // 12
 {
 {0, 1, 2}, {2, 3, 0}, {4, 5, 6}, {6, 7, 4}, {8, 9, 10},
 {10, 11, 8}, {12, 13, 14}, {14, 15, 12}, {16, 17, 18},
 {18, 19, 16}, {20, 21, 22}, {22, 23, 20}
 }
 }
 }
}

Material $material1
{
 Name {string {"Green"}}

 Color (attrib = "diffuse") {float[3] {{0, 1, 0}}}
}

 7

2
Structure Specification

�is section provides a detailed specification for each of the 39 data structures defined by OpenGEX.
�e structures appear in alphabetical order without regard for the possible hierarchical relationships or
the order in which they are likely to appear in an OpenGEX file.

�e description of each data structure includes tables that list the properties that are accepted, the types
of data structures that may appear as substructures, and the possible containing structures. �e meaning
of the information provided in these tables is discussed below.

Properties
If a structure accepts any property values, then they are listed in a table with a blue heading, as shown
in the example below. �e name of each property is listed in the first column, and its OpenDDL data
type is listed in the second column. �e default value used when a particular property is not specified
is listed in the third column. Some properties do not have default values, and this means that either the
property is required or there is some specified behavior that should be followed when the property is
not present. Many properties have a small set of possible values, and in such a case, a description of
each particular value is provided where necessary.

Property Type Default Description

example int32 0 A description of the property value.

Structure Data
�e types of substructures composing the data payload for a particular OpenGEX structure are listed in
a table with a green heading, as shown in the example below. �e allowed substructures may include
other OpenGEX structures, native OpenDDL data types, or both. Except where noted otherwise, the
order in which substructures appear is not significant. �e name of each possible substructure is listed
in the first column. �e second and third columns indicate the minimum and maximum number of times
that each substructure may occur within the structure. A dash in the third column indicates that there is
no maximum number.

8 OpenGEX Specification

Substructure Min Max Description

example 0 1 A description of the relationship to the substructure.

Hierarchy
�e types of structures that may hierarchically contain a particular OpenGEX structure are listed in a
table with an orange heading, as shown in the example below. �e allowed containing structures listed
in the first column are always OpenGEX structures. For structures that are allowed to exist at the root
level of the file, there is an entry for which a dash is listed in the first column.

Containing Structure Description

example A description of the relationship to the containing structure.

File Names
Where file names are specified inside a structure’s data (currently possible only inside the Texture
structure), they shall be formatted according to the following rules.

• A file name consists of a sequence of zero or more directory names followed by the name of the file
and an optional extension.

• �e delimiter between directory names and between the last directory name and the file name must
always be a single forward slash character having ASCII value 47.

• A file name representing an absolute path begins with a forward slash character, and a file name
representing a relative path does not. In the case of a relative path, a file name specifies a path relative
to the directory containing the OpenGEX file being processed.

• If a file name begins with two consecutive forward slash characters, then the first directory name
following the two slashes should be interpreted as a volume name or drive letter, as appropriate for
the operating system.

• A file name shall not contain any of the characters \:*?"<>| having ASCII values 92, 58, 42, 63, 34,
60, 62, and 124, respectively.

Animation 9

Animation

�e Animation structure contains animation data for a single node in the scene. Each animation
structure is directly contained inside a node structure (Node, BoneNode, GeometryNode, CameraNode,
or LightNode) or Texture structure, and it contains the data needed to modify its sibling transform
structures (Transform, Translation, Rotation, and Scale) or sibling MorphWeight structures over
time.

Tracks
An Animation structure contains one or more Track structures, and each track contains the data needed
to modify the data contained in one structure, the track’s target. A track identifies its target by specifying
the local OpenDDL name of a structure contained inside the same node structure that contains the
Animation structure. In Listing 2.1, the Translation structure named %xpos is targeted by the
animation track, and this track contains five keys that define the value that the translation should attain
at five points in time. In this case, the animation causes the geometry to move four units of distance in
the positive x direction for each unit of time.

Listing 2.1. �e animation track in this example modifies the data inside the Translation structure
having the local OpenDDL name %xpos.

GeometryNode
{
 Translation %xpos (kind = "x")
 {
 float {0.0}
 }

 Animation
 {
 Track (target = %xpos)
 {
 Time
 {
 Key {float {0.0, 0.5, 1.0, 1.5, 2.0}}
 }

 Value
 {
 Key {float {0.0, 2.0, 4.0, 6.0, 8.0}}
 }
 }
 }
}

10 OpenGEX Specification

A track always contains a Time structure and a Value structure, and the data points contained inside
those structures can be interpolated in a variety of ways. See the Track structure for information about
the different types of key value interpolation.

Properties
�e properties listed in the following table may be specified for an Animation structure.

Property Type Default Description

clip uint32 0 �e clip index for the animation.

begin float ‒ �e time at which the animation begins.

end float ‒ �e time at which the animation ends.

�e clip property specifies the animation clip index. �e set of all Animation structures in an
OpenGEX file having the same clip index constitute one complete animation clip for the entire scene.
If a structure contains any animation at all, then it is not a requirement that the same structure contains
an animation corresponding to each clip index present somewhere in the file. Information pertaining to
the animation clip as a whole can be stored in a Clip structure.

�e begin and end properties specify the times at which the animation begins and ends. �e values of
these properties are multiplied by the global time metric to obtain times measured in seconds. (See the
Metric structure.) If either property is not specified, then the begin and/or end time for the animation
is determined by the earliest and latest time values present in the Track structures belonging to the
animation. An animation track may include key times that lie outside the interval specified by the begin
and end properties, and the corresponding keys could still be used to calculate interpolated values inside
the animation’s time range.

A structure may contain multiple Animation structures belonging to the same animation clip (that is,
with the same value for the clip property). However, each track belonging to the set of Animation
structures having the same clip index must have a unique target structure, as given by the target
property of the Track structure, among all tracks belonging to all animations in the set.

Structure Data
�e following structures may compose the data stored inside an Animation structure.

Substructure Min Max Description

Track 1 ‒ An Animation structure must contain one or more tracks
that each hold animation keys for a single target.

Animation 11

Hierarchy
An Animation structure may be contained inside the following structures.

Containing Structure Description

Node
BoneNode
GeometryNode
CameraNode
LightNode

Animation structures can be contained inside any node structure.

Texture Animation structures can be contained inside a Texture structure.

12 OpenGEX Specification

Atten

�e Atten structure specifies an attenuation function for a light object. A light source may have multiple
attenuation functions applied to it, and the values produced by all of them are multiplied together to
determine the intensity of light reaching any particular point in space.

Properties
�e properties listed in the following table may be specified for an Atten structure.

Property Type Default Description

kind string "distance" �e kind of attenuation.

curve string "linear" �e function defining the attenuation curve.

�e kind property specifies the input to the attenuation function and must have one of the following
values.

• A value of "distance" indicates that the input to the attenuation function is the radial distance from
the light source.

• A value of "angle" indicates that the input to the attenuation function is the angle formed between
the negative z axis and the direction to the point being illuminated in object space.

• A value of "cos_angle" indicates that the input to the attenuation function is the cosine of the angle
formed between the negative z axis and the direction to the point being illuminated in object space.

�e curve property determines the general formula for the attenuation function and must have one of
the following values.

• A value of "linear" indicates that the attenuation is given by the linear function

 ()linear sat e ta t
e b
− = −

,

 where b is the input value at which the attenuation begins, and e is the input value at which the
attenuation ends. �e beginning and ending values are specified by parameters as described below.
�e default beginning value is 0.0, and the default ending value is 1.0.

• A value of "smooth" indicates that the attenuation is given by the cubic smooth-step function

 () ()() ()()2 3
smooth linear linear3 2a t a t a t= − ,

 which is dependent on the same beginning and ending input values b and e as the linear attenuation
function.

• A value of "inverse" indicates that the attenuation is given by the inverse function

Atten 13

 ()inverse sat
l c

sa t o
k t k s

 = + +
,

 where s and o are scale and offset values specified by parameters as described below. �e default
scale value is 1.0, and the default offset value is 0.0. �e linear coefficient lk and constant coefficient

ck are also specified by parameters, and they have the default values 1.0 and 0.0, respectively.

• A value of "inverse_square" indicates that the attenuation is given by the inverse square function

 ()
2

inverse_square 2 2sat
q l c

sa t o
k t k st k s

= + + +

,

 where s and o are scale and offset values specified by parameters as described below. �e default
scale value is 1.0, and the default offset value is 0.0. �e quadratic coefficient qk , linear coefficient

lk , and constant coefficient ck are also specified by parameters, and they have the default values 1.0,
0.0, and 0.0, respectively. (Note that the default value of lk is different for the inverse and inverse
square attenuation functions.)

Structure Data
�e following structures may compose the data stored inside an Atten structure.

Substructure Min Max Description

Param 0 ‒ An Atten structure may contain parameters.

For each Param substructure that is present, the value of its attrib property determines the meaning
of the parameter data. �e following parameter attrib values are defined by this specification for use
with an attenuation function.

• A value of "begin" or "end" indicates that the parameter is the distance from the light source at
which the attenuation function begins or ends. �ese are multiplied by the global distance metric to
obtain values measured in meters. (See the Metric structure.) �ese parameter values apply only if
the curve property has a value of "linear" or "smooth".

• A value of "scale" indicates that the parameter is a scale to be used with inverse distance attenuation
functions. �is is multiplied by the global distance metric to obtain a value measured in meters. (See
the Metric structure.) �is parameter applies only if the curve property has a value of "inverse"
or "inverse_square".

• A value of "offset" indicates that the parameter is an offset to be used with inverse distance
attenuation functions. �is parameter applies only if the curve property has a value of "inverse" or
"inverse_square". (Note that the offset is not multiplied by the global distance metric.)

• A value of "constant", "linear", or "quadratic" indicates that the parameter is the coefficient
ck , lk , or qk , respectively, used with inverse distance attenuation functions. �e ck and lk parameters

14 OpenGEX Specification

apply only if the curve property has a value of "inverse" or "inverse_square", and the qk
parameter applies only if the curve property has a value of "inverse_square".

• A value of "power" indicates that the parameter is a power to be used with angular attenuation
functions. �is parameter applies only if the kind property of the Atten structure has a value of
"angle" or "cos_angle". �e result produced by the attenuation function should be raised to the
value of the power parameter.

A writer may include Param substructures with application-defined attrib values. If a reader
encounters any of these for which the attrib value is either unsupported or unrecognized, then the
substructure should be ignored.

Hierarchy
An Atten structure may be contained inside the following structures.

Containing Structure Description

LightObject Atten structures can be contained inside a LightObject structure.

BoneCountArray 15

BoneCountArray

�e BoneCountArray structure contains bone count data for a skinned mesh. For each vertex belonging
to a mesh, the bone count array specifies the number of bones the influence the vertex. See the Skin
structure for details about skinning calculations.

Structure Data
�e following structures may compose the data stored inside a BoneCountArray structure.

Substructure Min Max Description

uint8
uint16
uint32
uint64

1 1 A BoneCountArray structure must contain an array of
per-vertex bone counts.

�e size of the bone count array must match the number of vertices specified in the containing mesh’s
VertexArray structures.

Hierarchy
A BoneCountArray structure may be contained inside the following structures.

Containing Structure Description

Skin A single BoneCountArray structure can be contained inside a Skin
structure.

16 OpenGEX Specification

BoneIndexArray

�e BoneIndexArray structure contains bone index data for a skinned mesh. For each vertex belonging
to a mesh, the bone index array contains n entries, where n is the number of bones influencing the
vertex. See the Skin structure for details about skinning calculations.

Structure Data
�e following structures may compose the data stored inside a BoneIndexArray structure.

Substructure Min Max Description

uint8
uint16
uint32
uint64

1 1 A BoneIndexArray structure must contain an array of
bone indexes.

�e total number of entries in a bone index array is equal to the sum of the counts specified in the
BoneCountArray structure for the same skin.

Hierarchy
A BoneIndexArray structure may be contained inside the following structures.

Containing Structure Description

Skin A single BoneIndexArray structure can be contained inside a Skin
structure.

BoneNode 17

BoneNode

�e BoneNode structure represents a single bone node in the scene. Because it is a specific type of node,
it possesses all of the characteristics of a generic node, such as an optional name, transform, and
animation. See the Node structure for more information.

�e collection of bone nodes forming the complete skeleton for a skinned mesh is referenced by a
BoneRefArray structure contained inside a Skeleton structure.

Structure Data
�e following structures may compose the data stored inside a BoneNode structure.

Substructure Min Max Description

Name 0 1 A BoneNode structure may have a name.

Transform
Translation
Rotation
Scale

0 ‒ A BoneNode structure may have any number of
transformations applied to it.

Animation 0 ‒ A BoneNode structure may contain animation.

Node
BoneNode
GeometryNode
CameraNode
LightNode

0 ‒ A BoneNode structure may have any number of
subnodes.

Hierarchy
A BoneNode structure may be contained inside the following structures.

Containing Structure Description

‒ BoneNode structures can be top-level structures.

Node
BoneNode
GeometryNode
CameraNode
LightNode

BoneNode structures can be contained inside any other node structure.

18 OpenGEX Specification

BoneRefArray

�e BoneRefArray structure contains the list of bone nodes belonging to a skeleton. See the Skeleton
structure for more information.

Structure Data
�e following structures may compose the data stored inside a BoneRefArray structure.

Substructure Min Max Description

ref 1 1 A BoneRefArray structure must contain an array of
references to BoneNode structures.

Hierarchy
A BoneRefArray structure may be contained inside the following structures.

Containing Structure Description

Skeleton A single BoneRefArray structure can be contained inside a Skeleton
structure.

BoneWeightArray 19

BoneWeightArray

�e BoneWeightArray structure contains bone weight data for a skinned mesh. For each vertex
belonging to a mesh, the bone weight array contains n entries, where n is the number of bones
influencing the vertex. See the Skin structure for details about skinning calculations.

Structure Data
�e following structures may compose the data stored inside a BoneWeightArray structure.

Substructure Min Max Description

float 1 1 A BoneWeightArray structure must contain an array of
bone weights.

�e total number of entries in a bone weight array is equal to the sum of the counts specified in the
BoneCountArray structure for the same skin.

Hierarchy
A BoneWeightArray structure may be contained inside the following structures.

Containing Structure Description

Skin A single BoneWeightArray structure can be contained inside a Skin
structure.

20 OpenGEX Specification

CameraNode

�e CameraNode structure represents a single camera node in the scene. Because it is a specific type of
node, it possesses all of the characteristics of a generic node, such as an optional name, transform, and
animation. See the Node structure for more information.

Object Reference
A camera node must contain an ObjectRef structure that references a CameraObject structure. �e
camera object contains the information necessary to construct the properly configured camera.

Structure Data
�e following structures may compose the data stored inside a CameraNode structure.

Substructure Min Max Description

Name 0 1 A CameraNode structure may have a name.

ObjectRef 1 1 A CameraNode structure must contain a reference to a
CameraObject structure.

Transform
Translation
Rotation
Scale

0 ‒ A CameraNode structure may have any number of
transformations applied to it.

Animation 0 ‒ A CameraNode structure may contain animation.

Node
BoneNode
GeometryNode
CameraNode
LightNode

0 ‒ A CameraNode structure may have any number of
subnodes.

CameraNode 21

Hierarchy
A CameraNode structure may be contained inside the following structures.

Containing Structure Description

‒ CameraNode structures can be top-level structures.

Node
BoneNode
GeometryNode
CameraNode
LightNode

CameraNode structures can be contained inside any other node
structure.

22 OpenGEX Specification

CameraObject

�e CameraObject structure contains data for a camera object. Multiple CameraNode structures may
reference a single camera object, and this allows a scene to contain multiple instances of the same
camera with different transforms.

In object space, a camera points in the direction of the negative z axis.

Structure Data
�e following structures may compose the data stored inside a CameraObject structure.

Substructure Min Max Description

Param 0 ‒ A CameraObject structure may contain parameters.

For each Param substructure that is present, the value of its attrib property determines the meaning
of the parameter data. �e following parameter attrib values are defined by this specification for use
with a camera object.

• A value of "fov" or "fovx" indicates that the parameter is the horizontal field-of-view angle. �is is
multiplied by the global angle metric to obtain a value measured in radians. (See the Metric
structure.)

• A value of "fovy" indicates that the parameter is the vertical field-of-view angle. �is is multiplied
by the global angle metric to obtain a value measured in radians. (See the Metric structure.)

• A value of "near" or "far" indicates that the parameter is the positive distance to the near plane or
far plane. �ese are multiplied by the global distance metric to obtain values measured in meters.
(See the Metric structure.)

If any of the above parameters are not present, then their default values are application-defined.

A writer may include Param substructures with application-defined attrib values. If a reader
encounters any of these for which the attrib value is either unsupported or unrecognized, then the
substructure should be ignored.

Hierarchy
A CameraObject structure may be contained inside the following structures.

Containing Structure Description

‒ CameraObject structures must be top-level structures.

Clip 23

Clip

�e Clip structure holds information about an animation clip. �e collection of all Animation
structures in an OpenGEX file having the same value for the clip property constitutes a complete
animation clip. A Clip structure having the matching value for its index property can specify a name
and frame rate for that animation clip. Clip structures always appear as top-level structures.

Name
If a Clip structure contains a Name structure, then it defines the externally-visible name of the animation
clip that should be displayed to the user in applications such as a level editor.

Properties
�e properties listed in the following table may be specified for a Clip structure.

Property Type Default Description

index uint32 0 �e clip index.

�e index property specifies the animation clip to which the Clip structure pertains. �is index is
matched to the values of the clip properties of the Animation structures contained throughout the
OpenGEX file.

Structure Data
�e following structures may compose the data stored inside a Clip structure.

Substructure Min Max Description

Name 0 1 A Clip structure may have a name.

Param 0 ‒ A Clip structure may contain any number of parameters.

For each Param substructure that is present, the value of its attrib property determines the meaning
of the parameter data. �e following parameter attrib value is defined by this specification for use
with an attenuation function.

• A value of "rate" indicates that the parameter is the frame rate at which the animation is intended
to play. �e parameter value is divided by the global time metric to obtain a value measured in frames
per second. (See the Metric structure.)

A writer may include Param substructures with application-defined attrib values. If a reader
encounters any of these for which the attrib value is either unsupported or unrecognized, then the
substructure should be ignored.

24 OpenGEX Specification

Hierarchy
A Clip structure may be contained inside the following structures.

Containing Structure Description

‒ Clip structures must be top-level structures.

Color 25

Color

�e Color structure holds a single color value.

�e red, green, and blue components of a color may need to be converted to the global color space. (See
the Metric structure.)

Properties
�e properties listed in the following table may be specified for a Color structure.

Property Type Default Description

attrib string ‒ �e color attribute.

�e attrib property is required, and it specifies the meaning of the color. See the containing structures
for information about the specific types of attributes that are defined.

Structure Data
�e following structures may compose the data stored inside a Color structure.

Substructure Min Max Description

float[3]
float[4]

1 1 A Color structure must contain an RGB color or RGBA
color in a float substructure having the corresponding
array size.

Hierarchy
A Color structure may be contained inside the following structures.

Containing Structure Description

Material Color structures can be contained inside a Material structure to
specify material attributes.

LightObject A single Color structure can be contained inside a LightObject
structure to specify the light’s color.

26 OpenGEX Specification

GeometryNode

�e GeometryNode structure represents a single geometry node in the scene. Because it is a specific
type of node, it possesses all of the characteristics of a generic node, such as an optional name,
transform, and animation. See the Node structure for more information.

Object Reference
A geometry node must contain an ObjectRef structure that references a GeometryObject structure.
�e geometry object contains all of the required mesh data and optional skinning data.

Material References
A geometry node may contain one or more MaterialRef structures that reference Material structures.
�e index property of each material reference specifies to which part a mesh the material is applied by
matching it with the material property of each IndexArray structure in the mesh.

Morph Weights
If the geometry object referenced by the geometry node contains vertex data for multiple morph targets,
then the geometry node may contain one or more MorphWeight structures that specify the blending
weight for each target. When morph weights are present, each MorphWeight structure may be the target
of a Track structure in the animation belonging to the geometry node.

Properties
�e properties listed in the following table may be specified for a GeometryNode structure to control
various rendering options that may be supported by an application.

Property Type Default Description

visible bool ‒ Whether the geometry is visible.

shadow bool ‒ Whether the geometry casts shadows.

motion_blur bool ‒ Whether the geometry is rendered with motion blur.

If any of the visible, shadow, or motion_blur properties is specified, then each overrides the
corresponding property belonging to the referenced GeometryObject structure.

GeometryNode 27

Structure Data
�e following structures may compose the data stored inside a GeometryNode structure.

Substructure Min Max Description

Name 0 1 A GeometryNode structure may have a name.

ObjectRef 1 1 A GeometryNode structure must contain a reference to a
GeometryObject structure.

MaterialRef 0 ‒ A GeometryNode structure may contain references to
Material structures.

MorphWeight 0 ‒ A GeometryNode structure may contain morph weights.

Transform
Translation
Rotation
Scale

0 ‒ A GeometryNode structure may have any number of
transformations applied to it.

Animation 0 ‒ A GeometryNode structure may contain animation.

Node
BoneNode
GeometryNode
CameraNode
LightNode

0 ‒ A GeometryNode structure may have any number of
subnodes.

Hierarchy
A GeometryNode structure may be contained inside the following structures.

Containing Structure Description

‒ GeometryNode structures can be top-level structures.

Node
BoneNode
GeometryNode
CameraNode
LightNode

GeometryNode structures can be contained inside any other node
structure.

28 OpenGEX Specification

GeometryObject

�e GeometryObject structure contains data for a geometry object. Multiple GeometryNode structures
may reference a single geometry object, and this allows a scene to contain multiple instances of the
same geometry with different transforms and materials.

Properties
�e properties listed in the following table may be specified for a GeometryObject structure to control
various rendering options that may be supported by an application.

Property Type Default Description

visible bool true Whether the geometry is visible.

shadow bool true Whether the geometry casts shadows.

motion_blur bool true Whether the geometry is rendered with motion blur.

If the visible property is false, then the geometry should not be rendered but should still participate
in collision detection, if applicable.

If the shadow property is false, then the geometry should not cast shadows, if supported by the
application.

If the motion_blur property is false, then the geometry should not be rendered with motion blur, if
supported by the application.

�e visible, shadow, and motion_blur properties can be overridden by any GeometryNode structure
referencing the GeometryObject structure. �e value of any one of these properties takes effect for a
particular geometry node only when the same property is not specified for the geometry node.

Structure Data
�e following structures may compose the data stored inside a GeometryObject structure.

Substructure Min Max Description

Mesh 1 ‒ A GeometryObject structure must contain one or more
meshes.

Morph 0 ‒ A GeometryObject structure may contain any number of
Morph structures.

A geometry object contains one Mesh structure for each level of detail.

GeometryObject 29

A geometry object may contain a Morph structure for each morph target for which vertex data exists
inside the Mesh structures.

Hierarchy
A GeometryObject structure may be contained inside the following structures.

Containing Structure Description

‒ GeometryObject structures must be top-level structures.

30 OpenGEX Specification

IndexArray

�e IndexArray structure contains index array data for a mesh. See the Mesh structure for information
about how arrays are used in a mesh.

Properties
�e properties listed in the following table may be specified for an IndexArray structure.

Property Type Default Description

material uint32 0 �e material index for the primitives constructed from the
index array.

restart uint64 ‒ �e primitive restart index for triangle strips.

front string "ccw" Whether front faces are wound clockwise or
counterclockwise.

�e material property specifies a material index for the list of primitives contained in the IndexArray
structure. �e actual set of materials to be assigned to each list of primitives is specified by the
MaterialRef structures contained in the GeometryNode structure that references the GeometryObject
structure containing the index array as part of a mesh. �e value of the index property for each
MaterialRef structure is matched to the value of the index array’s material property.

�e restart property can only be specified when the primitive property of the Mesh structure
containing the IndexArray structure is either "line_strip" or "triangle_strip". If this property is
present, then its value defines the index that signals the end of a strip. When this index is encountered,
it does not cause a new vertex to be added to the current strip but instead starts a new strip with the next
index. If the restart property is not specified at all, then there is no index that causes a new strip to be
started.

�e front property must be either "cw" or "ccw", and it specifies whether front-facing primitives are
wound clockwise or counterclockwise, respectively. A reader is free to reorder indexes to follow its
own conventions or to enforce a consistent winding direction.

IndexArray 31

Structure Data
�e following structures may compose the data stored inside an IndexArray structure.

Substructure Min Max Description

uint8
uint16
uint32
uint64
uint8[2]
uint16[2]
uint32[2]
uint64[2]
uint8[3]
uint16[3]
uint32[3]
uint64[3]
uint8[4]
uint16[4]
uint32[4]
uint64[4]

1 1 An IndexArray structure must contain an
array of vertex indexes, possibly grouped in
subarrays whose size corresponds to the
type of geometric primitive specified by the
containing mesh.

For points, line strips, and triangle strips,
there are no subarrays. For independent
lines, the subarray size must be 2, for
independent triangles, the subarray size
must be 3, and for independent quads, the
subarray size must be 4.

Hierarchy
An IndexArray structure may be contained inside the following structures.

Containing Structure Description

Mesh IndexArray structures can be contained inside a Mesh structure.

32 OpenGEX Specification

Key

�e Key structure contains key data for an animation track.

Properties
�e properties listed in the following table may be specified for a Key structure.

Property Type Default Description

kind string "value" �e kind of data.

�e kind property specifies the type of key data and must have one of the following values.

• A value of "value" indicates that the data contained in the Key structure provides the actual values
of the keys. If the Key structure is contained inside a Time structure, then the key values are times.
(Times are multiplied by the global time scale to obtain seconds. See the Metric structure.)
Otherwise, if the Key structure is contained inside a Value structure, then the key values are
coordinate values, rotation angles, etc., depending on the target of the animation track.

• A value of "−control" or "+control" indicates that the data contained in the Key structure provides
the incoming or outgoing control points for the keys, respectively. Control point data is valid only
inside Time and Value structures having a curve property value of "bezier".

• A value of "tension", "continuity", or "bias" indicates that the data contained in the Key
structure provides the tension, continuity, or bias parameters for the keys. �is data is valid only
inside Value structures having a curve property value of "tcb".

Structure Data
�e following structures may compose the data stored inside a Key structure.

Substructure Min Max Description

float
float[3]
float[4]
float[16]

1 1 A Key structure must contain an array of floating-point
key values.

For Key structures contained inside a Time structure, the data is always scalar, so the substructure must
be of type float with no array size.

For Key structures contained inside a Value structure, the data type must match the dimensionality of
the data stored in the target of the animation track when the key’s kind property has a value of "value",
"−control", or "+control". �e data type is always scalar when the kind property has a value of

Key 33

"tension", "continuity", or "bias". See the Track structure for information about the meaning of
the key data and how it is used to calculate interpolated values.

Hierarchy
A Key structure may be contained inside the following structures.

Containing Structure Description

Time
Value

Key structures can be contained inside Time and Value structures
belonging to an animation track.

34 OpenGEX Specification

LightNode

�e LightNode structure represents a single light node in the scene. Because it is a specific type of
node, it possesses all of the characteristics of a generic node, such as an optional name, transform, and
animation. See the Node structure for more information.

Object Reference
A light node must contain an ObjectRef structure that references a LightObject structure. �e light
object contains the information necessary to construct the proper type of light source.

Properties
�e properties listed in the following table may be specified for a LightNode structure.

Property Type Default Description

shadow bool ‒ Whether the light casts shadows.

If the shadow property is specified, then it overrides the value of the shadow property belonging to the
referenced LightObject structure.

Structure Data
�e following structures may compose the data stored inside a LightNode structure.

Substructure Min Max Description

Name 0 1 A LightNode structure may have a name.

ObjectRef 1 1 A LightNode structure must contain a reference to a
LightObject structure.

Transform
Translation
Rotation
Scale

0 ‒ A LightNode structure may have any number of
transformations applied to it.

Animation 0 ‒ A LightNode structure may contain animation.

Node
BoneNode
GeometryNode
CameraNode
LightNode

0 ‒ A LightNode structure may have any number of
subnodes.

LightNode 35

Hierarchy
A LightNode structure may be contained inside the following structures.

Containing Structure Description

‒ LightNode structures can be top-level structures.

Node
BoneNode
GeometryNode
CameraNode
LightNode

LightNode structures can be contained inside any other node
structure.

36 OpenGEX Specification

LightObject

�e LightObject structure contains data for a light object. Multiple LightNode structures may
reference a single light object, and this allows a scene to contain multiple instances of the same light
with different transforms.

Properties
�e properties listed in the following table may be specified for a LightObject structure.

Property Type Default Description

type string ‒ �e type of light.

shadow bool true Whether the light casts shadows.

�e type property is required and defines the type of light being described by the light object. It must
specify one of the following values.

• A value of "infinite" indicates that the light source is to be treated as if it were infinitely far away
so that its rays are parallel. In object space, the rays of an infinite light point in the direction of the
negative z axis.

• A value of "point" indicates that the light source is a point light that radiates in all directions.

• A value of "spot" indicates that the light source is a spot light that radiates from a single point but
in a limited range of directions. In object space, the primary direction of radiation for a spot light is
the negative z axis.

If the shadow property is false, then the light source should not cast shadows, if supported by the
application. �e shadow property can be overridden by any LightNode structure referencing the
LightObject structure. �e value of this property takes effect for a particular light node only when the
same property is not specified for the light node.

LightObject 37

Structure Data
�e following structures may compose the data stored inside a LightObject structure.

Substructure Min Max Description

Color 0 1 A LightObject structure may have a color.

Param 0 1 A LightObject structure may have a luminous intensity
parameter (point lights and spot lights) or an illuminance
parameter (infinite lights).

Spectrum 0 1 A LightObject structure may have an emission spectrum.

Texture 0 1 A LightObject structure may have a projected texture.

Atten 0 ‒ A LightObject structure may have any number of
attenuation functions applied to it.

For each Color substructure that is present, the value of its attrib property determines the meaning
of the color data. �e following color attrib value is defined by this specification for use with a light
object.

• A value of "light" indicates that the color is the main color of light emitted by the light source. If
this color is not present and no Spectrum substructure with the attrib property set to "light" is
present, then the default light color should be white with RGB value (1.0, 1.0, 1.0).

For each Param substructure that is present, the value of its attrib property determines the meaning
of the parameter data. �e following parameter attrib values are defined by this specification for use
with a light object.

• A value of "intensity" indicates that the parameter is the luminous intensity of a point light or spot
light. �is value is measured in candela (cd), which is equivalent to lumens per steradian, and it is
not affected by the global angle metric. If this parameter is not present, then the default intensity is
1.0 cd. �is value of the attrib property does not apply to infinite lights.

• A value of "illuminance" indicates that the parameter is the constant illuminance of an infinite
light. �is value is measured in lux (lx), which is equivalent to lumens per square meter, and it is not
affected by the global distance metric. If this parameter is not present, then the default illuminance
is 1.0 lx. �is value of the attrib property does not apply to point lights or spot lights.

For each Spectrum substructure that is present, the value of its attrib property determines the meaning
of the color data. �e following color attrib value is defined by this specification for use with a light
object.

• A value of "light" indicates that the spectrum is the main emission spectrum of the light source. If
a Color substructure with the attrib property set to "light" is also present, then the Spectrum
substructure takes precedence.

38 OpenGEX Specification

For each Texture substructure that is present, the value of its attrib property determines the meaning
of the texture map. �e following texture attrib value is defined by this specification for use with a
light object.

• A value of "projection" indicates that the texture map is a spot light projection. �e texture map
should be oriented so that right direction is aligned to the object-space positive x axis and the up
direction is aligned to the object-space positive y axis.

A writer may include Color, Param, Spectrum, and Texture substructures with application-defined
attrib values. If a reader encounters any of these for which the attrib value is either unsupported or
unrecognized, then the substructure should be ignored.

�e Atten substructures determine the attenuation function for a point light or spot light. �e
attenuation function has units of steradians per square meter (2sr m −⋅) and transforms the luminous
intensity of the light source, measured in candela, into the illuminance at a particular location, measured
in lux. Because the brightness of an infinite light is specified directly as an illuminance, attenuation
does not apply to infinite lights, and any Atten substructures present should be ignored.

Hierarchy
A LightObject structure may be contained inside the following structures.

Containing Structure Description

‒ LightObject structures must be top-level structures.

Material 39

Material

�e Material structure contains information about a material. Material structures are referenced by
geometry nodes through MaterialRef structures belonging to GeometryNode structures.

Name
If a Material structure contains a Name structure, then it defines the externally-visible name of the
material that should be displayed to the user in applications such as a level editor. (�is name should
not be confused with an OpenDDL name that could be assigned to the Material structure in an
OpenGEX file.)

Properties
�e properties listed in the following table may be specified for a Material structure.

Property Type Default Description

two_sided bool false Whether the material is two-sided.

If the two_sided property is true, then the geometry to which the material is applied should be rendered
two-sided without any back-face culling.

Structure Data
�e following structures may compose the data stored inside a Material structure.

Substructure Min Max Description

Name 0 1 A Material structure may have a name.

Color 0 ‒ A Material structure may contain any number of colors.

Param 0 ‒ A Material structure may contain any number of
parameters.

Spectrum 0 ‒ A Material structure may contain any number of spectra.

Texture 0 ‒ A Material structure may contain any number of textures.

For each Color, Param, Spectrum, and Texture substructure that is present, the value of its attrib
property determines the meaning of the data it contains. �e attrib values listed in Table 2.1 are
defined by this specification for use with a material. Each attrib value may be assigned only to the
specific types of substructures indicated by check marks in the table under the columns C, P, S, and T
representing Color, Param, Spectrum, and Texture.

40 OpenGEX Specification

�is specification does not require any particular implementation of the material attributes. A reader is
free to apply attributes using any preferred rendering techniques, and it may ignore attributes that are
not supported. �e default values used by a reader for any attributes that are not present must match the
default values listed in Table 2.1.

Whenever a Texture substructure corresponding to a scalar-valued material attribute is present, the
first channel of the texture map, after a possible swizzle, always specifies the attribute’s value. �e
channels of a texture map can be permuted by the swizzle property of the Texture structure.

If both Color and Spectrum substructures having the same attrib property value appear in a material,
then the Spectrum substructure takes precedence, and the Color substructure is used only if the reader
does not support spectra.

If both Color and Texture substructures having the same attrib property value appear in a material,
then they have a multiplicative effect. Likewise, If both Param and Texture substructures having the
same attrib property value appear in a material, then they have a multiplicative effect.

Normal maps must contain tangent-space normal vectors. In the case that a normal map’s format has
three or more channels, the red, green, and blue channels correspond to the x, y, and z components of
the normal vector. In the case that a normal map’s format has two channels, the red and green channels
correspond to the x and y components of the normal vector, and the z component is given by 2 2x y+ .

If a height map is present, it may be used to construct a normal map or additional maps containing
information such as parallax, horizon, or ambient occlusion data. Height values read from a height map
must be normalized to the range []0,1 and then multiplied by the height scale provided by a Param
substructure having the attrib value "height_scale" (if present).

A writer may include Color, Param, Spectrum, and Texture substructures with application-defined
attrib values. If a reader encounters any of these for which the attrib value is either unsupported or
unrecognized, then the substructure should be ignored.

Hierarchy
A Material structure may be contained inside the following structures.

Containing Structure Description

‒ Material structures must be top-level structures.

Material 41

Attribute C P S T Description

"diffuse" ✔ ✔ ✔ Diffuse reflection color, base color, or albedo.
�e default is the RGB color (1.0, 1.0, 1.0).

"specular" ✔ ✔ ✔ Specular reflection color.
�e default is the RGB color (0.0, 0.0, 0.0).

"specular_power" ✔ ✔ Specular power applied to ⋅N H.
�e default is 1.0.

"emission" ✔ ✔ ✔ Emission color.
�e default is the RGB color (0.0, 0.0, 0.0).

"opacity" ✔ ✔ Base opacity. �e default is 1.0.

"transparency" ✔ ✔ ✔ Base transparency color.
�e default is the RGB color (0.0, 0.0, 0.0).

"normal" ✔ Base normal map.

"height" ✔ Base height map.

"height_scale" ✔ Scale applied to height map. �e default is 1.0.

"occlusion" ✔ Precomputed ambient occlusion map.

"roughness" ✔ ✔ Base surface roughness in the range 0.0 to 1.0.
�e default is 0.0.

"metalness" ✔ ✔ Metalness in the range 0.0 to 1.0.
�e default is 0.0.

"clearcoat" ✔ ✔ ✔ Clearcoat color.
�e default is the RGB color (0.0, 0.0, 0.0).

"clearcoat_roughness" ✔ ✔ Clearcoat surface roughness in the range 0.0 to 1.0.
�e default is 0.0.

"clearcoat_normal" ✔ Clearcoat normal map.

"sheen" ✔ ✔ ✔ Sheen color.
�e default is the RGB color (0.0, 0.0, 0.0).

"sheen_roughness" ✔ ✔ Sheen surface roughness in the range 0.0 to 1.0.
�e default is 0.0.

"ior" ✔ Index of refraction. �e default is 1.0.

Table 2.1. �is table describes the attrib property values of Color, Param, Spectrum, and Texture substructures
that may appear inside a Material structure. Each attribute value may be applied only to the specific types of
substructures for which a check mark appears in the columns C, P, S, and T.

42 OpenGEX Specification

MaterialRef

�e MaterialRef structure holds a reference to a Material structure.

Properties
�e properties listed in the following table may be specified for a MaterialRef structure.

Property Type Default Description

index uint32 0 �e material index.

�e index property specifies the material index to which the referenced material is bound. �is index
is matched to the values of the material properties of the IndexArray structures contained in the
meshes belonging to the GeometryObject referenced by the GeometryNode structure containing the
MaterialRef structure.

Structure Data
�e following structures may compose the data stored inside a MaterialRef structure.

Substructure Min Max Description

ref 1 1 A MaterialRef structure must contain a reference to a
Material structure.

Hierarchy
A MaterialRef structure may be contained inside the following structures.

Containing Structure Description

GeometryNode Multiple MaterialRef structures can be contained inside a
GeometryNode structure, but each must have a different value for the
index property.

Mesh 43

Mesh

�e Mesh structure contains data for a single geometric mesh, and a GeometryObject structure contains
one mesh for each level of detail. Each mesh typically contains several arrays of per-vertex data and
one or more index arrays as shown in Listing 2.2.

A mesh may contain vertex data for multiple morph targets. �e morph target to which each vertex
array belongs is determined by the value of its morph property. See the VertexArray structure for
details about determining which vertex arrays belong to each morph target.

A mesh may also contain a single Skin structure that holds the skeleton and bone influence data needed
for skinning.

Listing 2.2. �is mesh structure contains per-vertex positions, normals, and texture coordinates, and it
contains an index array that determines how triangle primitives are assembled.

Mesh (primitive = "triangles")
{
 VertexArray (attrib = "position")
 {
 float[3] {...}
 }

 VertexArray (attrib = "normal")
 {
 float[3] {...}
 }

 VertexArray (attrib = "texcoord")
 {
 float[2] {...}
 }

 IndexArray (material = 0)
 {
 uint16[3] {...}
 }
}

44 OpenGEX Specification

Properties
�e properties listed in the following table may be specified for a Mesh structure.

Property Type Default Description

lod uint32 0 �e level of detail. A value of 0 corresponds to the
highest level of detail.

primitive string "triangles" �e primitive type.

�e lod property specifies the level of detail to which the mesh corresponds. A GeometryObject
structure may contain any number of Mesh structures as long as they each have a unique level of detail.
�e highest level of detail is number 0, and successively lower levels of detail count upward.

�e primitive property specifies the type of geometric primitive used by the mesh. It must have one
of the values shown in Table 2.2, and it must be the same value for each level of detail.

Primitive Description

"points" �e mesh is composed of a set of independent points. �e number of
points is n, and point i is given by vertex i.

"lines" �e mesh is composed of a set of independent lines. �e number of lines
is 2n , and line i is composed of vertices 2i and 2 1i + .

"line_strip" �e mesh is composed of one or more line strips. �e number of lines is
1n − , and line i is composed of vertices i and 1i + .

"triangles" �e mesh is composed of a set of independent triangles. �e number of
triangles is 3n , and triangle i is composed of vertices 3i, 3 1i + , and
3 2 .i +

"triangle_strip" �e mesh is composed of one or more triangle strips. �e number of
triangles is 2n − , and triangle i is composed of vertices i, 1i + , and 2i +
when i is even or vertices i, 2i + , and 1i + when i is odd, in the orders
listed.

"quads" �e mesh is composed of a set of individual quads. �e number of quads
is 4n , and quad i is composed of vertices 4i, 4 1i + , 4 2i + , and 4 3i + .

Table 2.2. �is table describes the geometric primitives corresponding to each possible value of the primitive
property. �e value of n is the total number of indexes if an IndexArray structure is present or the total number
of vertices in each VertexArray structure, otherwise. Primitives are indexed by the letter i, starting at zero.

For line strips and triangle strips, the restart property of the IndexArray structure may be used to
construct multiple independent strips.

Mesh 45

Structure Data
�e following structures may compose the data stored inside a Mesh structure.

Substructure Min Max Description

VertexArray 1 ‒ A Mesh structure must contain one or more vertex arrays.

IndexArray 0 ‒ A Mesh structure may contain one or more index arrays.

Skin 0 1 A Mesh structure may contain skinning data.

All VertexArray structures belonging to a mesh must specify data for the same number of vertices.

Each IndexArray structure specifies how the vertices are assembled into geometric primitives. For
lines, triangles, and quads, the index array contains subarrays that each specify the indexes of the
vertices composing a single primitive. For points, line strips, and triangle strips, the index data is stored
as a single array.

If a mesh does not contain an IndexArray structure, then it is as if an index array with the default
properties existed and contained each index between 0 and 1n − in order and grouped into subarrays as
necessary, where n is the number of vertices in each VertexArray structure.

Hierarchy
A Mesh structure may be contained inside the following structures.

Containing Structure Description

GeometryObject Multiple Mesh structures can be contained inside a GeometryObject
structure, but each must have a different lod value.

46 OpenGEX Specification

Metric

�e Metric structure specifies global measurement and orientation properties such as the distance scale
and up direction. It can also specify the chromaticities of the primary colors.

Every Metric structure in an OpenGEX file must precede all structures of any other type.

Up Direction
One of the properties that can be defined by the Metric structure is the global up direction, which can
be the positive z axis or the positive y axis. If a reader’s preferred up direction does not match the up
direction used by an OpenGEX file, then most vectors and matrices need to be adjusted to account for
the difference.

In the case that a reader’s preferred up direction is the positive z axis and the OpenGEX file specifies
the positive y axis, each 3D vector v representing any position or direction should be transformed into
a vector ′v using the formula

 (), ,x z yv v v′ = −v ,

and each 4 4× matrix M representing any coordinate space transformation should be transformed into
a matrix ′M using the formula

11 13 12 14

31 33 32 34

21 23 22 24

0 0 0 1

M M M M
M M M M

M M M M

−
 − − − ′ =

−

M .

In the opposite case that a reader’s preferred up direction is the positive y axis and the OpenGEX file
specifies the positive z axis, each 3D vector v representing any position or direction should be
transformed into a vector ′v using the formula

 (), ,x z yv v v′ = −v ,

and each 4 4× matrix M representing any coordinate space transformation should be transformed into
a matrix ′M using the formula

11 13 12 14

31 33 32 34

21 23 22 24

0 0 0 1

M M M M
M M M M
M M M M

−
 − ′ =
− − −

M .

�ese transforms affect the position, normal, tangent, and bitangent vectors stored in a VertexArray
structure, all transforms applied to any node structure, the array of bind-pose transforms stored in a
Skeleton structure, and the bind-pose transform stored in a Skin structure.

Metric 47

Color Space
�e Metric structure can define the xy chromaticity coordinates of the red, green, and blue primary
colors as well as the white point. If these are omitted, then the default values correspond to the sRGB
color space.

If the chromaticities of the primary colors or white point do not match those of the reader’s preferred
color space, then color values specified inside Color structures must be converted by passing through
the XYZ color space. Given chromaticity coordinates (),R Rx y , (),G Gx y , and (),B Bx y corresponding
to the red, green, and blue primary colors and chromaticity coordinates (),W Wx y corresponding to the
white point, the primary luminances RY , GY , and BY are determined by the calculation

1

1 1 1 1
R R R G G B B W W

G

B R R G G B B W W

Y x y x y x y x y
Y
Y z y z y z y z y

−

 =

,

where 1z x y= − − for each of the subscripts R, G, B, and W.

Any color (), ,R G B based on the specified red, green, and blue chromaticities is then converted to
coordinates (), ,X Y Z in the XYZ color space by the formula

R G B
R G B

R G B

R G B

R G B
R G B

R G B

x x xY Y Y
X Ry y y
Y Y Y Y G
Z z z z BY Y Y

y y y

 =

.

�e conversion from XYZ coordinates to an arbitrary RGB color space is accomplished by inverting
this equation. In the case of the sRGB color space, a color (), ,R G B is given by

3.240970 1.537383 0.498611
0.969244 1.875968 0.041555
0.055630 0.203977 1.056972

R X
G Y
B Z

− −
 = −

−

,

where the chromaticity coordinates are defined as

() ()
() ()
() ()
() ()

, 0.64, 0.33
, 0.30, 0.60
, 0.15, 0.06
, 0.3127, 0.3290

R R

G G

B B

W W

x y
x y
x y

x y

=

=

=

=

and the primary luminances are thus calculated to be

0.212639
0.715169
0.072192

R

G

B

Y
Y
Y

=
=
= .

48 OpenGEX Specification

Properties
�e properties listed in the following table may be specified for a Metric structure.

Property Type Default Description

key string ‒ �e metric identifier.

�e key property is required and specifies the type of metric being defined. It must specify one of the
values shown in Table 2.3.

Key Description

"distance" �e factor by which all distance values should be multiplied to obtain a
value measured in meters.

"angle" �e factor by which all angle values should be multiplied to obtain a
value measured in radians.

"time" �e factor by which all time values should be multiplied to obtain a
value measured in seconds.

"up" �e world-space axis that corresponds to the up direction.

"forward" �e world-space axis that corresponds to the forward direction for
models such as characters and vehicles.

"red" �e xy chromaticity coordinates of the red primary color.

"green" �e xy chromaticity coordinates of the green primary color.

"blue" �e xy chromaticity coordinates of the blue primary color.

"white" �e xy chromaticity coordinates of the white point.

Table 2.3. �is table describes the meaning of each possible value of the key property.

Structure Data
�e following structures may compose the data stored inside a Metric structure.

Substructure Min Max Description

float
float[2]
string

1 1 A Metric structure must contain one data structure
holding the value of the metric.

Metric 49

For the "distance", "angle", and "time" metrics, the data contained in the structure must be a single
floating-point value. �e default value for each of these three metrics is 1.0 if any are not specified in
an OpenGEX file.

For the "up" metric, the data contained in the structure must be a single string value equal to either "y"
or "z". �e default value for the up direction is "z" if it is not specified in an OpenGEX file.

For the "forward" metric, the data contained in the structure must be a single string value equal to "x",
"−x", "y", "−y", "z", or "−z". �e default value for the forward direction is "x" if it is not specified in
an OpenGEX file.

For the "red", "green", "blue", and "white" metrics, the data contained in the structure must be a
single subarray of two floating-point values. If any of these metrics are not specified in an OpenGEX
file, then the default value for the red primary chromaticity is ()0.64, 0.33 , the default value for the
green primary chromaticity is ()0.3, 0.6 , the default value for the blue primary chromaticity is
()0.15, 0.06 , and the default value for the white point chromaticity is ()0.3127, 0.329 .

�e default metrics would be defined in an OpenGEX file as shown in Listing 2.3.

Listing 2.3. �ese Metric structures define the default units of measurement and default directions.

Metric (key = "distance") {float {1.0}}
Metric (key = "angle") {float {1.0}}
Metric (key = "time") {float {1.0}}

Metric (key = "up") {string {"z"}}
Metric (key = "forward") {string {"x"}}

Metric (key = "red") {float[2] {{0.64, 0.33}}}
Metric (key = "green") {float[2] {{0.3, 0.6}}}
Metric (key = "blue") {float[2] {{0.15, 0.06}}}
Metric (key = "white") {float[2] {{0.3127, 0.329}}}

Hierarchy
A Metric structure may be contained inside the following structures.

Containing Structure Description

‒ Metric structures must be top-level structures.

50 OpenGEX Specification

Morph

�e Morph structure holds information about a morph target belonging to a GeometryObject structure.
See the VertexArray structure for a description of what vertex data constitutes a complete morph
target.

Name
If a Morph structure contains a Name structure, then it defines the externally-visible name of the morph
target that should be displayed to the user in applications such as a level editor.

Properties
�e properties listed in the following table may be specified for a Morph structure.

Property Type Default Description

index uint32 0 �e morph target index.

base uint32 ‒ �e base morph target index for a relative morph target.

�e index property specifies the morph target index. �is index is matched to the values of the morph
properties of the VertexArray structures contained inside the same GeometryObject structure as the
Morph structure.

�e base property is optional and, if specified, indicates that the morph target is relative and intended
to be applied as a difference with the morph target having the given base index. If the base property is
not specified, then the morph target is absolute. Any morph target that does not have a corresponding
Morph structure is absolute.

If a base index is specified to indicate a relative morph target, then the morph target to which the base
index refers must be an absolute morph target.

See the MorphWeight structure for details about calculating vertex attributes for absolute and relative
morph targets.

Structure Data
�e following structures may compose the data stored inside a Morph structure.

Substructure Min Max Description

Name 0 1 A Morph structure may have a name.

Morph 51

Hierarchy
A Morph structure may be contained inside the following structures.

Containing Structure Description

GeometryObjectTrack Multiple Morph structures can be contained inside a GeometryObject
structure, but each must have a different value for the index property.

52 OpenGEX Specification

MorphWeight

�e MorphWeight structure holds a single morph weight for a GeometryNode structure that references
a GeometryObject structure containing vertex data for multiple morph targets.

A GeometryNode structure typically contains a MorphWeight structure for each morph target stored in
the GeometryObject structure, but this is not a requirement. If a geometry node contains any morph
weight data at all, then the weight for any unreferenced morph target shall be assumed to be zero. If a
geometry node contains no morph weight data, then the weight for the morph target having index 0
shall be one, and the weights for all other morph targets shall be zero.

A MorphWeight structure can be the target of a track stored inside an Animation structure.

Morphing
When a mesh is deformed by the morphing operation, the morphed attribute morphedA of a vertex (where
an attribute can mean a position, normal, etc.) is given by

 morphed i i
i

w=∑A M ,

where iw is the weight for the morph target having index i, and the summation is taken over all indexes
for which a morph target exists and a weight is specified. �e symbol iM represents the input vertex
attribute value for morph target i, and it depends on whether the morph target is absolute or relative as
determined by the presence of the base property in the corresponding Morph structure. Let iA be the
value of the vertex attribute specified for morph target i inside the appropriate VertexArray structure
belonging to the morph target. If the morph target is absolute, then i i=M A . If the morph target is
relative, then ()i i b i= −M A A , where the function ()b i produces the base index for the morph target
given by the base property of its Morph structure.

Properties
�e properties listed in the following table may be specified for a MorphWeight structure.

Property Type Default Description

index uint32 0 �e morph target index.

�e index property specifies the morph target index to which the morph weight applies. If the
GeometryObject structure contains no vertex data corresponding to this morph target index, then the
MorphWeight structure should be ignored. Each MorphWeight structure belonging to any particular
GeometryNode structure must have a unique morph target index among all morph weights belonging
to that geometry node.

MorphWeight 53

Structure Data
�e following structures may compose the data stored inside a MorphWeight structure.

Substructure Min Max Description

float 1 1 A MorphWeight structure must contain a single floating-
point value.

Hierarchy
A MorphWeight structure may be contained inside the following structures.

Containing Structure Description

GeometryNodeTrack Multiple MorphWeight structures can be contained inside a
GeometryNode structure.

54 OpenGEX Specification

Name

�e Name structure holds the name of a node, morph target, material, or animation clip.

Structure Data
�e following structures may compose the data stored inside a Name structure.

Substructure Min Max Description

string 1 1 A Name structure must contain a name string.

Hierarchy
A Name structure may be contained inside the following structures.

Containing Structure Description

Node
BoneNode
GeometryNode
CameraNode
LightNode

A single Name structure can be contained inside any node structure.

Morph A single Name structure can be contained inside a Morph structure.

Material A single Name structure can be contained inside a Material structure.

Clip A single Name structure can be contained inside a Clip structure.

Node 55

Node

�e Node structure represents a single generic node in the scene with no associated object. �e various
types of node structures (Node, BoneNode, GeometryNode, CameraNode, and LightNode) are allowed
to be top-level structures in an OpenGEX file, and each one can contain any number of other node
structures of any type. �is organization of nodes forms the main tree hierarchy of the scene. Every
node can possess a name, a set of transforms, and a set of animations.

Name
If a Node structure contains a Name structure, then it defines the externally-visible name of the node that
should be displayed to the user in applications such as a level editor. (�is name should not be confused
with an OpenDDL name that could be assigned to the Node structure in an OpenGEX file.)

Transforms
A Node structure may contain any number of Transform, Translation, Rotation, and Scale
structures, and these collectively define the local transform for the node. Each transform can be
designated as a node transform or an object transform (based on the value of its object property), and
these divide the complete local transform into two factors. �e node transform is inherited by subnodes,
meaning that the local transform of a subnode is relative only to the node transform factor of its parent
node. �e object transform is applied only to the node to which it belongs and is not inherited by any
subnodes.

�e node transform is calculated by converting all of the transforms having an object property value
of false to a 4 4× matrix and multiplying them together in the order that they appear as substructures.
Similarly, the object transform is calculated by multiplying matrices together for the transforms having
an object property value of true in the order that they appear as substructures. Any interleaving of
transforms having different object property values has no meaning.

Animation
A node structure may contain one or more animation clips. Each clip can contain a set of animation
tracks that each target one of the transforms contained by the node structure (or a MorphWeight
structure in the case of a geometry node). Animation tracks often target a single component of a node’s
transform, such as the x coordinate of the node position or a rotation about a particular axis, and this is
the reason that multiple transform structures are supported and expected to be used in the ordinary
application of animation. See the Animation and Track structures for more information.

56 OpenGEX Specification

Structure Data
�e following structures may compose the data stored inside a Node structure.

Substructure Min Max Description

Name 0 1 A Node structure may have a name.

Transform
Translation
Rotation
Scale

0 ‒ A Node structure may have any number of
transformations applied to it.

Animation 0 ‒ A Node structure may contain animation tracks that are
applied to the node transformations or morph weights.

Node
BoneNode
GeometryNode
CameraNode
LightNode

0 ‒ A Node structure may have any number of subnodes.

Hierarchy
A Node structure may be contained inside the following structures.

Containing Structure Description

‒ Node structures can be top-level structures.

Node
BoneNode
GeometryNode
CameraNode
LightNode

Node structures can be contained inside any other node structure.

ObjectRef 57

ObjectRef

�e ObjectRef structure holds a reference to an object structure. Object references are required by the
GeometryNode, CameraNode, and LightNode structures, and they link these types of nodes to the
objects they represent in the scene. A single object may be referenced by multiple nodes, and this allows
an object to be instanced multiple times in the scene with different transforms and animations.

Structure Data
�e following structures may compose the data stored inside a ObjectRef structure.

Substructure Min Max Description

ref 1 1 An ObjectRef structure must contain a reference to a
GeometryObject structure, LightObject structure, or
CameraObject structure.

Hierarchy
A ObjectRef structure may be contained inside the following structures.

Containing Structure Description

GeometryNode
CameraNode
LightNode

A single ObjectRef structure must be contained inside every
GeometryNode, CameraNode, and LightNode structure.

58 OpenGEX Specification

Param

�e Param structure holds a single parameter value.

Properties
�e properties listed in the following table may be specified for a Param structure.

Property Type Default Description

attrib string ‒ �e parameter attribute.

�e attrib property is required, and it specifies the meaning of the parameter. See the containing
structures for information about the specific types of parameters that are defined.

Structure Data
�e following structures may compose the data stored inside a Param structure.

Substructure Min Max Description

float 1 1 A Param structure must contain one float substructure
holding the value of the parameter.

Hierarchy
A Param structure may be contained inside the following structures.

Containing Structure Description

Material Param structures can be contained inside a Material structure to
specify material attributes.

CameraObject
LightObject

Param structures can be contained inside a CameraObject or
LightObject structure to specify object parameters.

Atten Param structures can be contained inside an Atten structure to specify
attenuation parameters.

Clip Param structures can be contained inside a Clip structure to specify
animation clip attributes.

Rotation 59

Rotation

�e Rotation structure holds a rotation transformation in one of several possible variants.

When contained inside a node structure, a Rotation structure can be the target of a track stored inside
an Animation structure.

Properties
�e properties listed in the following table may be specified for a Rotation structure.

Property Type Default Description

kind string "axis" �e kind of rotation.

object bool false Whether the rotation is applied to the object only.

�e kind property specifies the particular variant of the rotation transformation, and it must have one
of the following values.

• A value of "x", "y", or "z" indicates that the rotation occurs about the x, y, or z axis. For these
variants, the data contained inside the Rotation structure must be a single floating-point value
representing the angle of rotation. For a particular angle θ , a rotation about the x, y, or z axis is
converted to a 4 4× matrix by using the following formulas.

 x

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

θ θ
θ θ

 − =

M y

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

θ θ

θ θ

 =
−

M z

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

θ θ
θ θ

−

 =

M

• A value of "axis" indicates that the rotation occurs about an arbitrary axis. For this variant, the data
contained inside the Rotation structure must be a single array of four floating-point values. �e first
entry in the array is the angle of rotation, and the remaining three entries define the x, y, and z
components of the axis of rotation. For a particular angle θ , a rotation about an axis A is converted
to a 4 4× matrix by using the following formula.

() () ()
() () ()
() () ()

2

2

axis 2

cos 1 cos 1 cos sin 1 cos sin 0
1 cos sin cos 1 cos 1 cos sin 0
1 cos sin 1 cos sin cos 1 cos 0

0 0 0 1

x x y z x z y

x y z y y z x

x z y y z x z

θ A θ A A θ A θ A A θ A θ
A A θ A θ θ A θ A A θ A θ
A A θ A θ A A θ A θ θ A θ

+ − − − − +
 − + + − − − =
 − − − + + −

M

 It is not a requirement that the specified axis have unit length, so a reader should normalize the axis
before calculating a rotation matrix.

60 OpenGEX Specification

• A value of "quaternion" indicates that the rotation is given by a quaternion. For this variant, the
data contained inside the Rotation structure must be a single array of four floating-point values
(), , ,x y z w that define the quaternion x y z w+ + +i j k . For a particular unit quaternion (), , ,x y z w ,
the corresponding 4 4× rotation matrix is given by the following formula.

2 2

2 2

quaternion 2 2

1 2 2 2 2 2 2 0
2 2 1 2 2 2 2 0
2 2 2 2 1 2 2 0

0 0 0 1

y z xy wz xz wy
xy wz x z yz wx
xz wy yz wx x y

− − − +
 + − − − =
 − + − −

M

 It is not a requirement that the specified quaternion have length one, so a reader should unitize the
quaternion before calculating a rotation matrix.

For the rotation variants that directly include an angle value, the angle is multiplied by the global angle
metric to obtain an angle measured in radians. (See the Metric structure.) Note that a positive angle
corresponds to a counterclockwise rotation when the axis points toward the viewer.

�e object property specifies whether the rotation transformation applies to the node or to the object.
See the Node structure for a discussion of node transforms and object transforms.

Structure Data
�e following structures may compose the data stored inside a Rotation structure.

Substructure Min Max Description

float
float[4]

1 1 A Rotation structure must contain one float
substructure holding the value of the rotation.

If the kind property is "x", "y", or "z", then the Rotation structure must contain a single floating-
point value representing the angle of rotation. If the kind property is "xyz" or "quaternion", then the
Rotation structure must contain a single array of four floating-point values.

Rotation 61

Hierarchy
A Rotation structure may be contained inside the following structures.

Containing Structure Description

Node
BoneNode
GeometryNode
CameraNode
LightNode

Rotation structures can be contained inside any node structure.

Texture Rotation structures can be contained inside a Texture structure to
specify texture coordinate transformations.

62 OpenGEX Specification

Scale

�e Scale structure holds a scale transformation in one of several possible variants.

When contained inside a node structure, a Scale structure can be the target of a track stored inside an
Animation structure.

Properties
�e properties listed in the following table may be specified for a Scale structure.

Property Type Default Description

kind string "xyz" �e kind of scale.

object bool false Whether the scale is applied to the object only.

�e kind property specifies the particular variant of the scale transformation, and it must have one of
the following values.

• A value of "x", "y", or "z" indicates that the scale occurs along only the x, y, or z axis. For these
variants, the data contained inside the Scale structure must be a single floating-point value
representing the scale. For a particular scale s, a scale transformation along the x, y, or z axis is
converted to a 4 4× matrix by using the following formulas.

 x

0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

s

 =

M y

1 0 0 0
0 0 0
0 0 1 0
0 0 0 1

s

 =

M z

1 0 0 0
0 1 0 0
0 0 0
0 0 0 1

s

 =

M

• A value of "xyz" indicates that the scale occurs along all three coordinate axes. For this variant, the
data contained inside the Scale structure must be a single array of three floating-point values
representing the scale along each of the x, y, and z axes. For a particular scale S, a scale transformation
is converted to a 4 4× matrix by using the following formula.

 xyz

0 0 0
0 0 0
0 0 0
0 0 0 1

x

y

z

S
S

S

 =

M

�e object property specifies whether the scale transformation applies to the node or to the object. See
the Node structure for a discussion of node transforms and object transforms.

Scale 63

Structure Data
�e following structures may compose the data stored inside a Scale structure.

Substructure Min Max Description

float
float[3]

1 1 A Scale structure must contain one float substructure
holding the value of the scale.

If the kind property is "x", "y", or "z", then the Scale structure must contain a single floating-point
value representing the scale along one axis. If the kind property is "xyz", then the Scale structure
must contain a single array of three floating-point values representing the scales along all
three axes.

Hierarchy
A Scale structure may be contained inside the following structures.

Containing Structure Description

Node
BoneNode
GeometryNode
CameraNode
LightNode

Scale structures can be contained inside any node structure.

Texture Scale structures can be contained inside a Texture structure to
specify texture coordinate transformations.

64 OpenGEX Specification

Skeleton

�e Skeleton structure contains information about the bones belonging to a skeleton. �e bone nodes
belonging to a skeleton are identified by an array of OpenDDL references contained in a BoneRefArray
substructure. �e bind-pose transforms of those bone nodes are specified by an array of 4 4× matrices
contained in a Transform substructure. See the Skin structure for details about how these are used in
skinning calculations.

Structure Data
�e following structures may compose the data stored inside a Skeleton structure.

Substructure Min Max Description

BoneRefArray 1 1 A Skeleton structure must contain a bone reference array.

Transform 1 1 A Skeleton structure must contain an array of bind-pose
transforms.

�e number of matrices specified in the Transform structure must match the number of bones
referenced in the BoneRefArray structure.

Hierarchy
A Skeleton structure may be contained inside the following structures.

Containing Structure Description

Skin A single Skeleton structure must be contained inside every Skin
structure.

Skin 65

Skin

�e Skin structure contains information about a skeleton and the per-vertex bone influence data for a
skinned mesh. Each Mesh structure may contain a single Skin structure, which is required to contain
all of the substructures shown in Listing 2.4.

�e Skeleton structure contains an array of OpenDDL references to the full set of bone nodes that
make up the skeleton and an array of their bind-pose transforms.

Listing 2.4. A Skin structure is required to contain the substructures shown here.

Skin
{
 Skeleton
 {
 BoneRefArray // References to the bone nodes.
 {
 ref {$bone1, $bone2, ...}
 }

 Transform // Bind-pose transforms for all bones.
 {
 float[16]
 {
 ...
 }
 }
 }

 BoneCountArray // Number of bones influencing each vertex.
 {
 uint8 {...}
 }

 BoneIndexArray // Bone index per influence per vertex.
 {
 uint8 {...}
 }

 BoneWeightArray // Weight per influence per vertex.
 {
 float {...}
 }
}

66 OpenGEX Specification

�e BoneCountArray structure contains an array of counts that specify the number of bones influencing
each vertex in the mesh. �e size of this array must match the number of vertices contained in each
VertexArray structure belonging to the mesh.

�e BoneIndexArray and BoneWeightArray structures contain arrays of bone indexes and weighting
values for each influence affecting each vertex. �e size of both of these arrays must be equal to the
sum of the bone counts contained in the BoneCountArray structure. Each index contained in the
BoneIndexArray structure must be in the range []0, 1N − , where N is the total number of bones
referenced by the skeleton.

Skinning
When a mesh is deformed by the skinning operation, the skinned position skinnedP of a vertex is given by

 () ()

1
1

skinned bind bind
0

n

i k i k i
i

w
−

−

=

=∑P M B T P ,

where bindP is the bind-pose position of the vertex (having an implicit w coordinate of one), bindT is the
bind-pose transform of the skin given by the Transform substructure (if present), and the other symbols
have the following meanings:

• n is the number of bones influencing the vertex, as given by the corresponding entry in the
BoneCountArray structure.

• �e function ()k i produces the absolute bone index for the i-th influence, as given by the i-th entry
corresponding to the vertex in the BoneIndexArray structure.

• ()k iB is the bind-pose transform of the i-th influence, as given by entry ()k i in the Transform
substructure of the Skeleton structure.

• ()k iM is the current transform of the i-th influence, equal to the transform of the bone node referenced
by entry ()k i in the BoneRefArray substructure of the Skeleton structure.

• iw is the weight of the i-th influence, as given by the i-th entry corresponding to the vertex in the
BoneWeightArray structure.

Normal vectors (treated as row vectors here) are calculated in a similar manner, but using the inverses
of the matrices involved. �e skinned vertex normal skinnedN is given by

 () ()

1
1 1

skinned bind bind
0

n

i k i k i
i

w
−

− −

=

=∑N N T B M ,

where bindN is the bind-pose normal of the vertex (having an implicit w coordinate of zero). Of course,
if the upper-left 3 3× portions of the matrices are known to be orthogonal, then normals can be
calculated using the non-inverted matrices.

Skin 67

Structure Data
�e following structures may compose the data stored inside a Skin structure.

Substructure Min Max Description

Transform 0 1 A Skin structure may contain a bind-pose transform
for the mesh.

Skeleton 1 1 A Skin structure must contain a skeleton.

BoneCountArray 1 1 A Skin structure must contain a bone count array.

BoneIndexArray 1 1 A Skin structure must contain a bone index array.

BoneWeightArray 1 1 A Skin structure must contain a bone weight array.

Hierarchy
A Skin structure may be contained inside the following structures.

Containing Structure Description

Mesh A single Skin structure can be contained inside a Mesh structure.

68 OpenGEX Specification

Spectrum

�e Spectrum structure holds a table of data representing the spectral distribution for emission or
reflectance.

A spectrum is specified by a table of n values ()S λ that are evenly spaced between minimum and
maximum wavelengths minλ and maxλ , measured in nanometers (nm). �is data can be converted to an
XYZ color by calculating the three sums

() ()

() ()

() ()

Δ

Δ

Δ ,

λ

λ

λ

X S λ x λ λ

Y S λ y λ λ

Z S λ z λ λ

=

=

=

∑

∑

∑

where () ()max minΔ 1λ λ λ n= − − is the difference between consecutive wavelengths. �e functions
()x λ , ()y λ , and ()z λ are the standard CIE XYZ color matching functions defined by the values

tabulated in Tables 2.4, 2.5, and 2.6. �e color matching functions are zero for all wavelengths less than
360 nm or greater than 830 nm. For wavelengths that are not a multiple of 5 nm, a reader may use any
preferred method of interpolation to determine the values of ()x λ , ()y λ , and ()z λ .

An XYZ color can be transformed into the particular RGB color space used by an OpenGEX file
through the method described under the Metric structure.

�e units of the data values ()S λ are inverse nanometers (1nm −), and this is not affected by the global
distance metric.

A spectrum should ordinarily be normalized so that its luminance Y is unity. �e luminous intensity of
a light source is specified separately by a Param structure inside the LightObject structure. �e
luminance of an emissive material is specified separately by a Param structure inside the Material
structure.

Properties
�e properties listed in the following table may be specified for a Spectrum structure.

Property Type Default Description

attrib string ‒ �e spectrum attribute.

min uint32 ‒ �e minimum wavelength, in nanometers.

max uint32 ‒ �e maximum wavelength, in nanometers

�e attrib property is required, and it specifies the meaning of the spectrum. See the containing
structures for information about the specific types of attributes that are defined.

Spectrum 69

�e min and max properties are both required, and they specify the range of wavelengths over which
the spectrum is defined. �e maximum wavelength must be greater than the minimum wavelength.

Structure Data
�e following structures may compose the data stored inside a Spectrum structure.

Substructure Min Max Description

float 1 1 A Spectrum structure must contain one float
substructure holding the spectral distribution data.

Hierarchy
A Spectrum structure may be contained inside the following structures.

Containing Structure Description

Material Spectrum structures can be contained inside a Material structure to
specify material attributes.

LightObject A single Spectrum structure can be contained inside a LightObject
structure to specify the emission spectrum of the light.

70 OpenGEX Specification

λ x()λ λ x()λ λ x()λ λ x()λ λ x()λ
360 0.0001299 455 0.3187 550 0.43345 645 0.3608 740 0.0006900786

365 0.0002321 460 0.2908 555 0.51205 650 0.2835 745 0.0004760213

370 0.0004149 465 0.2511 560 0.5945 655 0.2187 750 0.0003323011

375 0.0007416 470 0.19536 565 0.6784 660 0.1649 755 0.0002348261

380 0.001368 475 0.1421 570 0.7621 665 0.1212 760 0.0001661505

385 0.002236 480 0.09564 575 0.8425 670 0.0874 765 0.000117413

390 0.004243 485 0.05795 580 0.9163 675 0.0636 770 0.00008307527

395 0.00765 490 0.03201 585 0.9786 680 0.04677 775 0.00005870652

400 0.01431 495 0.0147 590 1.0263 685 0.0329 780 0.00004150994

405 0.02319 500 0.0049 595 1.0567 690 0.0227 785 0.00002935326

410 0.04351 505 0.0024 600 1.0622 695 0.01584 790 0.00002067383

415 0.07763 510 0.0093 605 1.0456 700 0.01135916 795 0.00001455977

420 0.13438 515 0.0291 610 1.0026 705 0.008110916 800 0.00001025398

425 0.21477 520 0.06327 615 0.9384 710 0.005790346 805 0.000007221456

430 0.2839 525 0.1096 620 0.85445 715 0.004109457 810 0.000005085868

435 0.3285 530 0.1655 625 0.7514 720 0.002899327 815 0.000003581652

440 0.34828 535 0.22575 630 0.6424 725 0.00204919 820 0.000002522525

445 0.34806 540 0.2904 635 0.5419 730 0.001439971 825 0.000001776509

450 0.3362 545 0.3597 640 0.4479 735 0.0009999493 830 0.000001251141

Table 2.4. �is table contains the values of the color matching function ()x λ for wavelengths λ measured
in nanometers (nm).

Spectrum 71

λ y()λ λ y()λ λ y()λ λ y()λ λ y()λ
360 0.000003917 455 0.048 550 0.99495 645 0.1382 740 0.0002492

365 0.000006965 460 0.06 555 1.0 650 0.107 745 0.0001719

370 0.00001239 465 0.0739 560 0.995 655 0.0816 750 0.00012

375 0.00002202 470 0.09098 565 0.9786 660 0.061 755 0.0000848

380 0.000039 475 0.1126 570 0.952 665 0.04458 760 0.00006

385 0.000064 480 0.13902 575 0.9154 670 0.032 765 0.0000424

390 0.000120 485 0.1693 580 0.87 675 0.0232 770 0.00003

395 0.000217 490 0.20802 585 0.8163 680 0.017 775 0.0000212

400 0.000396 495 0.2586 590 0.757 685 0.01192 780 0.000015

405 0.00064 500 0.323 595 0.6949 690 0.00821 785 0.0000106

410 0.00121 505 0.4073 600 0.631 695 0.005723 790 0.0000074657

415 0.00218 510 0.503 605 0.5668 700 0.004102 795 0.0000052578

420 0.004 515 0.6082 610 0.503 705 0.002929 800 0.0000037029

425 0.0073 520 0.71 615 0.4412 710 0.002091 805 0.0000026078

430 0.0116 525 0.7932 620 0.381 715 0.001484 810 0.0000018366

435 0.01684 530 0.862 625 0.321 720 0.001047 815 0.0000012934

440 0.023 535 0.91485 630 0.265 725 0.00074 820 0.00000091093

445 0.0298 540 0.954 635 0.217 730 0.00052 825 0.00000064153

450 0.038 545 0.9803 640 0.175 735 0.0003611 830 0.00000045181

Table 2.5. �is table contains the values of the color matching function ()y λ for wavelengths λ measured
in nanometers (nm).

72 OpenGEX Specification

λ z()λ λ z()λ λ z()λ λ z()λ λ z()λ
360 0.0006061 455 1.7441 550 0.00875 645 0.00001 740 0.0

365 0.001086 460 1.6692 555 0.00575 650 0.0 745 0.0

370 0.001946 465 1.5281 560 0.0039 655 0.0 750 0.0

375 0.003486 470 1.28764 565 0.00275 660 0.0 755 0.0

380 0.00645 475 1.0419 570 0.0021 665 0.0 760 0.0

385 0.01055 480 0.81295 575 0.0018 670 0.0 765 0.0

390 0.02005 485 0.6162 580 0.00165 675 0.0 770 0.0

395 0.03621 490 0.46518 585 0.0014 680 0.0 775 0.0

400 0.06785 495 0.3533 590 0.0011 685 0.0 780 0.0

405 0.1102 500 0.272 595 0.001 690 0.0 785 0.0

410 0.2074 505 0.2123 600 0.0008 695 0.0 790 0.0

415 0.3713 510 0.1582 605 0.0006 700 0.0 795 0.0

420 0.6456 515 0.1117 610 0.00034 705 0.0 800 0.0

425 1.03905 520 0.07825 615 0.00024 710 0.0 805 0.0

430 1.3856 525 0.05725 620 0.00019 715 0.0 810 0.0

435 1.62296 530 0.04216 625 0.0001 720 0.0 815 0.0

440 1.74706 535 0.02984 630 0.00005 725 0.0 820 0.0

445 1.7826 540 0.0203 635 0.00003 730 0.0 825 0.0

450 1.77211 545 0.0134 640 0.00002 735 0.0 830 0.0

Table 2.6. �is table contains the values of the color matching function ()z λ for wavelengths λ measured
in nanometers (nm).

Texture 73

Texture

�e Texture structure holds information about a single texture map and how it is accessed with texture
coordinates.

Texture Coordinate Transform
A Texture structure may contain any number of Transform, Translation, Rotation, and Scale
structures, and these collectively define the transformation applied to texture coordinates before they
are used to access the texture map. �e texture coordinate transform is calculated by converting each
of the transforms to a 4 4× matrix and multiplying them together in the order that they appear as
substructures. (�e object property of each transform structure is ignored in this case.)

�e texture coordinate transformations may be animated through the presence of Animation
substructures whose tracks target the specific transform structures.

Properties
�e properties listed in the following table may be specified for a Texture structure.

Property Type Default Description

attrib string ‒ �e texture attribute.

texcoord uint32 0 �e index of the texture coordinate set associated with the
texture.

swizzle string "i" �e component swizzle.

x_address string "repeat" �e addressing mode for the x coordinate.

y_address string "repeat" �e addressing mode for the y coordinate.

z_address string "repeat" �e addressing mode for the z coordinate.

border string "zero" �e border color.

�e attrib property is required, and it specifies the meaning of the texture. See the containing
structures for information about the specific types of attributes that are defined.

�e texcoord property specifies which texture coordinate set belonging to a mesh should be used to
access the texture.

�e swizzle property specifies the order into which the components of each texel are permuted. �e
value assigned to this property must be a string of length one or four, and each character in the string
must be one from the set {'r', 'g', 'b', 'a', 'x', 'y', 'z', 'w', '0', '1', 'i'}. �e characters 'r'
and 'x' correspond to the first component, the characters 'g' and 'y' correspond to the second

74 OpenGEX Specification

component, the characters 'b' and 'z' correspond to the third component, and the characters 'a' and
'w' correspond to the fourth component. �e characters '0' and '1' mean the constant values zero and
one. �e character 'i' indicates the identity component for its position in the string. �e identity string
for a four-channel texture is "rgba", the identity string for a three-channel texture is "rgb1", the
identity string for a two-channel texture is "rg01", and the identity string for a one-channel texture is
"r001". �e meaning of a string containing a single character is equivalent to a string containing that
same character repeated four times.

�e x_address, y_address, and z_address properties specify the addressing modes that are applied
when any of the x, y, and z coordinates used to sample the texture fall outside the range []0,1 . �e values
that can be assigned to these properties are described in Table 2.7.

Addressing Mode Description

"repeat" �e texture is accessed with ()frac c , causing the image to repeat at each
integer.

"clamp" �e texture is accessed with ()sat c , causing the image to be clamped at its
boundary.

"border" If c is in the range []0,1 , then the texture is accessed with the coordinate c.
Otherwise, the border color is produced.

"mirror_repeat" �e texture is accessed with () 1
2 21 2 frac c− − , causing the image to repeat

with an alternating mirroring pattern.

"mirror_clamp" �e texture is accessed with ()sat c , causing the image to be mirrored about
zero and clamped at its boundary.

"mirror_border" If c is in the range []0,1 , then the texture is accessed with the coordinate c .
Otherwise, the border color is produced.

Table 2.7. �is table describes the addressing modes that can be assigned to the x_address, y_address, and
z_address properties. �e coordinate c represents one of the x, y, and z coordinates used to sample the texture.
�e function ()frac c is the fraction defined by ()frac c c c= − , and the function ()sat c is the saturation defined
by () ()()sat min max ,0 ,1c c= .

�e border property specifies one of three constant colors to be produced when a texture is accessed
with a coordinate falling outside the range []0,1 and the addressing mode corresponding to that
coordinate is "border" or "mirror_border". �e value of this property may be "black" for a border
color of ()0, 0, 0,1 , "white" for a border color of ()1,1,1,1 , or "zero" for a border color of ()0, 0, 0, 0 .

Texture 75

Structure Data
�e following structures may compose the data stored inside a Texture structure.

Substructure Min Max Description

string 1 1 A Texture structure must contain one string
substructure holding the file name of the texture.

Transform
Translation
Rotation
Scale

0 ‒ A Texture structure may contain any number of
transformations that are applied to the texture coordinates
of a mesh when they are used to fetch from the texture
map.

Animation 0 ‒ A Texture structure may contain animation tracks that are
applied to the texture coordinate transformations.

Hierarchy
A Texture structure may be contained inside the following structures.

Containing Structure Description

Material Texture structures can be contained inside a Material structure to
specify material attributes.

LightObject A single Texture structure can be contained inside a LightObject
structure to specify a projected texture for a spot light.

76 OpenGEX Specification

Time

�e Time structure contains key time data in an animation track.

Properties
�e properties listed in the following table may be specified for a Time structure.

Property Type Default Description

curve string "linear" �e function defining the interpolation curve.

�e curve property specifies the manner in which time values are interpolated and must have one of
the following values.

• A value of "linear" indicates that times are interpolated linearly.

• A value of "bezier" indicates that times are interpolated on a one-dimensional cubic Bézier curve.

See the Track structure for information about calculating interpolated key values.

Structure Data
�e following structures may compose the data stored inside a Time structure.

Substructure Min Max Description

Key 1 3 A Time structure must contain one or three key
substructures, depending on the curve property, holding
the time curve data.

�e Time structure must contain a Key structure whose kind property is "value". �e data inside this
Key structure must consist of a monotonically increasing sequence of time values.

If the curve property is "bezier", then the Time structure must contain two additional Key structures
whose kind properties are "−control" and "+control". �ese hold the incoming and outgoing control
points for the time curve, respectively. Each incoming control point must be less than its corresponding
time value but greater than the outgoing control point for the preceding time value, if any. Likewise,
each outgoing control point must be greater than its corresponding time value but less than the incoming
control point for the succeeding time value, if any.

Time 77

Hierarchy
A Time structure may be contained inside the following structures.

Containing Structure Description

Track A single Time structure must be contained inside every Track
structure.

78 OpenGEX Specification

Track

�e Track structure contains animation key data for a single transformation structure (Transform,
Translation, Rotation, and Scale) or a single MorphWeight structure. �e key data is separated into
time and value curves having an equal number of data points.

Interpolation
Given a time t that falls between two key times 1t and 2t stored in the Time structure, a parameter s in
the range [)0,1 can be calculated and used to interpolate between the corresponding values 1v and 2v
stored in the Value structure.

If the curve property for the Time structure is "linear", then the parameter s is given by

 () 1

2 1

t ts t
t t
−

=
−

.

If the curve property for the Time structure is "bezier", then the parameter s must be that for which
the one-dimensional cubic Bézier polynomial produces the time t. �is can be determined by solving
the equation

 () () ()3 2 2 3
1 1 2 21 3 1 3 1 0s t s s c s s c s t t− + − + − + − = ,

where 1c is the outgoing control point (in the Key structure with a kind property of "+control")
corresponding to the time 1t , and 2c is the incoming control point (in the Key structure with a kind
property of "−control") corresponding to the time 2t . Because the times and control points are required
to satisfy 1 1 2 2t c c t< < < , there is only one real solution, and it can quickly be found through an iterative
application of Newton’s method, beginning with ()0s s t= as in the linear case. Refined values of s are
given by the formula

 () () ()
() () ()

3 2
2 2 1 1 2 1 1 1 1 1

1 2
2 2 1 1 2 1 1 1 1

3 3 3 2 3
3 3 3 6 2 3

i i i
i i

i i

t c c t s c c t s c t s t ts s
t c c t s c c t s c t+

− + − + − + + − + −
= −

− + − + − + + −
.

Once the parameter s has been calculated, it is exclusively used to interpolate key values, and the time
t is no longer needed.

If the curve property for the Value structure is "constant", then the interpolated value v is trivially
given by () 1v s v= .

If the curve property for the Value structure is "linear", then the interpolated value v is given by

 () () 1 21v s s v sv= − + .

If the curve property for the Value structure is "bezier", then v is given by

 () () () ()3 2 2 3
1 1 2 21 3 1 3 1v s s v s s p s s p s v= − + − + − + ,

Track 79

where 1p is the outgoing control point (in the Key structure with a kind property of "+control")
corresponding to the value 1v , and 2p is the incoming control point (in the Key structure with a kind
property of "−control") corresponding to the value 2v .

If the curve property for the Value structure is "tcb", then v is given by the Hermite curve

 () () () () ()22 3 2 2
1 2 1 21 3 2 3 2 1 1v s s s v s s v s s u s s u= − + + − + − + − ,

where 1u and 2u are tangents derived from tension, continuity, and bias parameters iτ , iχ , and iβ
corresponding to each key value iv . �ese tangents are given by the formulas

 () () () () () () () ()1 1 1 1 1 1
1 1 0 2 1

1 1 1 1 1 1
2 2

τ χ β τ χ βu v v v v− + + − − −
= − + −

and

 () () () () () () () ()2 2 2 2 2 2
2 2 1 3 2

1 1 1 1 1 1
2 2

τ χ β τ χ βu v v v v− − + − + −
= − + − .

�e value 0v is the one preceding 1v in the Key structure. If 1v is the first key value, then 0 1v v= , and the
first term of the formula for 1u is eliminated. Likewise, the value 3v is the one following 2v in the Key
structure. If 2v is the last key value, then 3 2v v= , and the second term of the formula for 2u is eliminated.

�e tension, continuity, and bias parameters are always scalars and are stored alongside the key values
(inside the Value structure) in additional Key structures having kind properties of "tension",
"continuity", and "bias".

�e key values iv in all cases, and the control points ip in the case of Bézier curves, can be scalars or
vectors. For vectors, interpolated values are calculated componentwise with the above formulas.

Properties
�e properties listed in the following table may be specified for a Track structure.

Property Type Default Description

target ref ‒ �e target structure of the animation track.

�e target property is required and specifies the particular structure that is animated by the track. �e
target structure must be a Transform, Translation, Rotation, Scale, or MorphWeight structure.

80 OpenGEX Specification

Structure Data
�e following structures may compose the data stored inside a Track structure.

Substructure Min Max Description

Time 1 1 A Track structure must contain a set of time keys.

Value 1 1 A Track structure must contain a set of value keys.

A Track structure must always contain exactly one Time structure and one Value structure. �ese each
contain one or more Key structures that contain the actual animation data. �e number of time keys and
the number of values keys must be equal.

Hierarchy
A Track structure may be contained inside the following structures.

Containing Structure Description

Animation Track structures can be contained inside an Animation structure.

Transform 81

Transform

�e Transform structure holds one or more 4 4× transformation matrices. In the cases that a Transform
structure is contained inside any type of node structure, a Texture structure, or a Skin structure, it must
contain a single matrix. In the case that a Transform structure is contained inside a Skeleton structure,
is must contain an array of matrices with one entry for each bone referenced by the skeleton.

When contained inside a node structure or a Texture structure, a Transform structure can be the target
of a track stored inside an Animation structure.

Properties
�e properties listed in the following table may be specified for a Transform structure.

Property Type Default Description

object bool false Whether the transform is applied to the object only.

�e object property specifies whether the transformation matrix applies to the node or to the object.
See the Node structure for a discussion of node transforms and object transforms. �e object property
is allowed but must be ignored for Transform structures not contained inside a node structure.

Structure Data
�e following structures may compose the data stored inside a Transform structure.

Substructure Min Max Description

float[16]
float[12]
float[9]
float[6]
float[4]

1 1 A Transform structure must contain one float
substructure holding the values of one or more
transformation matrices in subarrays. �e subarray size
must be one of 16, 12, 9, 6, or 4.

�e number of entries stored for each matrix inside a Transform structure can have one of five possible
values, which must be specified as the subarray size of the float substructure. Each size corresponds
to a specific submatrix of a full 4 4× transformation. In all cases, the matrix entries are specified in
column-major order such that all entries in one column occur before the first entry in the next column.

82 OpenGEX Specification

If the number of entries is 16, then the entire 4 4× transformation is specified by the values {a, b, c, d,
e, f, g, h, i, j, k, l, m, n, o, p}, forming the matrix

a e i m
b f j n
c g k o
d h l p

.

If the number of entries is 12, then the first three rows of the 4 4× transformation are specified by the
values {a, b, c, d, e, f, g, h, i, j, k, l}, forming the matrix

0 0 0 1

a d g j
b e h k
c f i l

.

If the number of entries is 9, then the upper-left 3 3× portion of the 4 4× transformation is specified by
the values {a, b, c, d, e, f, g, h, i}, forming the matrix

0
0
0

0 0 0 1

a d g
b e h
c f i

.

If the number of entries is 6, then the first, second, and fourth entries in the first two rows of the 4 4×
transformation are specified by the values {a, b, c, d, e, f}, forming the matrix

0
0

0 0 1 0
0 0 0 1

a c e
b d f

.

If the number of entries is 4, then the upper-left 2 2× portion of the 4 4× transformation is specified by
the values {a, b, c, d}, forming the matrix

0 0
0 0

0 0 1 0
0 0 0 1

a c
b d

.

Transform 83

Hierarchy
A Transform structure may be contained inside the following structures.

Containing Structure Description

Node
BoneNode
GeometryNode
CameraNode
LightNode

Transform structures can be contained inside any node structure.

Skin A single Transform structure can be contained inside a Skin structure
to specify a bind-pose transform for the mesh.

Skeleton A single Transform structure must be contained inside a Skeleton
structure to specify an array of bind-pose transforms for the bones.

Texture Transform structures can be contained inside a Texture structure to
specify texture coordinate transformations.

84 OpenGEX Specification

Translation

�e Translation structure holds a translation transformation in one of several possible variants.

When contained inside a node structure, a Translation structure can be the target of a track stored
inside an Animation structure.

Properties
�e properties listed in the following table may be specified for a Translation structure.

Property Type Default Description

kind string "xyz" �e kind of translation.

object bool false Whether the translation is applied to the object only.

�e kind property specifies the particular variant of the translation transformation, and it must have
one of the following values.

• A value of "x", "y", or "z" indicates that the translation occurs along only the x, y, or z axis. For
these variants, the data contained inside the Translation structure must be a single floating-point
value representing the displacement. For a particular displacement d, a translation along the x, y, or
z axis is converted to a 4 4× matrix by using the following formulas.

 x

1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

d

 =

M y

1 0 0 0
0 1 0
0 0 1 0
0 0 0 1

d

 =

M z

1 0 0 0
0 1 0 0
0 0 1
0 0 0 1

d

 =

M

• A value of "xyz" indicates that the translation occurs along all three coordinate axes. For this variant,
the data contained inside the Translation structure must be a single array of three floating-point
values representing the displacement along each of the x, y, and z axes. For a particular displacement
D, a translation is converted to a 4 4× matrix by using the following formula.

 xyz

1 0 0
0 1 0
0 0 1
0 0 0 1

x

y

z

D
D
D

 =

M

�e object property specifies whether the translation transformation applies to the node or to the
object. See the Node structure for a discussion of node transforms and object transforms.

Translation 85

Structure Data
�e following structures may compose the data stored inside a Translation structure.

Substructure Min Max Description

float
float[3]

1 1 A Translation structure must contain one float
substructure holding the value of the translation.

If the kind property is "x", "y", or "z", then the Translation structure must contain a single floating-
point value representing the displacement along one axis. If the kind property is "xyz", then the
Translation structure must contain a single array of three floating-point values representing the
displacement along all three axes.

Hierarchy
A Translation structure may be contained inside the following structures.

Containing Structure Description

Node
BoneNode
GeometryNode
CameraNode
LightNode

Translation structures can be contained inside any node structure.

Texture Translation structures can be contained inside a Texture structure
to specify texture coordinate transformations.

86 OpenGEX Specification

Value

�e Value structure contains key value data in an animation track.

Properties
�e properties listed in the following table may be specified for a Value structure.

Property Type Default Description

curve string "linear" �e function defining the interpolation curve.

�e curve property specifies the manner in which values are interpolated and must have one of the
following values.

• A value of "constant" indicates that values are not interpolated but remain constant until the next
key time.

• A value of "linear" indicates that values are interpolated linearly.

• A value of "bezier" indicates that values are interpolated on a cubic Bézier curve.

• A value of "tcb" indicates that values are interpolated on a tension-continuity-bias (TCB) spline.

See the Track structure for information about calculating interpolated key values.

Structure Data
�e following structures may compose the data stored inside a Value structure.

Substructure Min Max Description

Key 1 4 A Value structure must contain one, three, or four key
substructures, depending on the curve property, holding
the value curve data.

�e Value structure must contain a Key structure whose kind property is "value". �e data inside this
Key structure must have the same dimensionality as the target of the enclosing Track structure.

If the curve property is "bezier", then the Value structure must contain two additional Key structures
whose kind properties are "-control" and "+control". �ese hold the incoming and outgoing control
points for the value curve, respectively, and they must have the same dimensionality as the key values.

If the curve property is "tcb", then the Value structure must contain three additional Key structures
whose kind properties are "tension", "bias", and "continuity". �e data contained inside these
three Key structures is always scalar.

Value 87

Hierarchy
A Value structure may be contained inside the following structures.

Containing Structure Description

Track A single Value structure must be contained inside every Track
structure.

88 OpenGEX Specification

VertexArray

�e VertexArray structure contains array data for a single vertex attribute in a mesh. See the Mesh
structure for information about how arrays are used in a mesh.

Properties
�e properties listed in the following table may be specified for a VertexArray structure.

Property Type Default Description

attrib string ‒ �e vertex attribute.

index uint32 0 �e attribute index.

morph uint32 0 �e morph target index.

�e attrib property specifies the meaning of the data contained in the vertex array. Its value must be
a string containing a legal OpenDDL identifier. �e vertex array attrib values defined by this
specification are shown in Table 2.8. A writer may include VertexArray structures with application-
defined attrib values. If a reader encounters any of these for which the attrib value is either
unsupported or unrecognized, then the vertex array should be ignored.

Attribute Meaning

"position" �e vertex position.

"normal" �e normal vector.

"tangent" �e tangent vector aligned to the x texture coordinate.

"bitangent" �e tangent vector aligned to the y texture coordinate.

"color" �e vertex color.

"texcoord" �e texture coordinates.

Table 2.8. �is table lists the vertex attribute types defined by OpenGEX.

�e index property allows an attribute index to be specified for any vertex array. �is provides a
mechanism through which multiple arrays with the same attrib property can be included in a mesh.
For example, a mesh having two sets of texture coordinates would specify them using two VertexArray
structures with the attrib property set to "texcoord", but they would have their index properties set
to 0 and 1. If the attribute index is omitted, then it is equivalent to specifying an index of 0.

VertexArray 89

Normal arrays, tangent arrays, and bitangent arrays should generally contain three-dimensional data. If
a tangent array contains four-dimensional data, then the fourth component should contain the sign of
the volume ∧ ∧T B N, where T, B, and N are the corresponding three-dimensional entries for the same
vertex taken from the tangent, bitangent, and normal arrays.

�e texcoord property of the Texture structure specifies which texture coordinate array to use when
accessing a texture map. If multiple tangent and bitangent arrays are present, they should have index
property values corresponding to the attribute index of the associated texture coordinate arrays so that
a matching tangent frame can be determined for each set of texture coordinates.

�e morph property specifies the index of the morph target to which the vertex array belongs. A mesh
may contain multiple vertex arrays having the same values for the attrib and index properties only if
they have different values for their morph properties. A complete morph target having the index k is
composed of the following two sets of vertex arrays:

• All of the vertex arrays for which the morph property has a value of k.

• For any values of the attrib and index properties that are specified for a vertex array of any morph
target but it not specified for a vertex array of the morph target having index k, the vertex array having
the same values for the attrib and index properties and the minimum value for the morph property
(which may be the default value of 0).

�e blending weights applied to the morph targets are specified inside a Morph structure contained in a
GeometryNode structure that references a GeometryObject structure containing the mesh. For any
geometry node not containing any MorphWeight structures but referencing a geometry object
containing multiple morph targets, all vertex arrays for which the morph property is not 0 should be
ignored.

Structure Data
�e following structures may compose the data stored inside a VertexArray structure.

Substructure Min Max Description

half
half[2]
half[3]
half[4]
float
float[2]
float[3]
float[4]
double
double[2]
double[3]
double[4]

1 1 A VertexArray structure must contain one substructure
holding the vertex array data, and it must have a floating-
point primitive data type.

90 OpenGEX Specification

�e data for each type of vertex array attribute may consist of an array of floating-point values or an
array of subarrays containing two, three, or four values each. When fewer than four components are
specified in the data for any vertex array, the second, third, and fourth components shall implicitly be
given the values 0, 0, and 1, respectively.

Hierarchy
A VertexArray structure may be contained inside the following structures.

Containing Structure Description

Mesh VertexArray structures can be contained inside a Mesh structure.

 91

A
OpenDDL Reference

A.1 Introduction

�e Open Data Description Language (OpenDDL) is a generic text-based language that is designed to
store arbitrary data in a concise human-readable format. It can be used as a means for easily exchanging
information among many programs or simply as a method for storing a program’s data in an editable
format. Each unit of data in an OpenDDL file has an explicitly specified type, and this eliminates
ambiguity and fragile inferencing methods that can impact the integrity of the data. �is strong typing
is further supported by the specification of an exact number of bits required to store numerical data
values when converted to a binary representation.

�e data structures in an OpenDDL file are organized as a collection of trees. �e language includes a
built-in mechanism for making references from one data structure to any other data structure, effectively
allowing the contents of a file to take the form of a directed graph.

As a foundation for higher-level data formats, OpenDDL is intended to be minimalistic. It assigns no
meaning whatsoever to any data beyond its hierarchical organization, and it imposes no restrictions on
the composition of data structures. Semantics and validation are left to be defined by specific higher-
level formats derived from OpenDDL. �e core language is designed to place as little burden as possible
on readers so that it’s easy to write programs that understand OpenDDL.

�e OpenDDL syntax is illustrated in the “railroad diagrams” found throughout this specification, and
it is designed to feel familiar to C/C++ programmers. Whitespace never has any meaning, so OpenDDL
files can be formatted in any manner preferred.

92 OpenGEX Specification

A.2 Structures

An OpenDDL file is composed of a sequence of structures. A single structure consists of a type identifier
followed by an optional name, an optional list of properties, and its data payload enclosed in braces, as
shown in Figure A.1. �ere are two general classes of structures called primitive structures and derived
structures. Primitive structures have types that are defined by OpenDDL itself, and they contain
primitive data such as integers, floating-point numbers, or strings. Derived structures represent custom
data types defined by a derivative file format, and they can contain other structures, primitive or derived,
that can be organized in a hierarchical manner.

Figure A.1. An OpenDDL file contains a sequence of structures that follow the production rule
shown here.

[Example — Suppose that a derivative file format defined a data type called Vertex that contains the
3D coordinates of a single vertex position. �is could be written as follows.

Vertex
{
 float {1.0, 2.0, 3.0}
}

�e Vertex identifier represents a derived structure defined by the file format, and it contains another
structure of type float, which is a primitive data type defined by OpenDDL. �e data in the float
structure consists of the three values 1.0, 2.0, and 3.0. — End example]

If a structure has a type that is not recognized by an implementation, then that structure and all of the
data it contains must be ignored without producing an error. �is allows extensions to be added to a
data format without breaking compatibility with implementations that do not support them.

OpenDDL Reference 93

A.3 Data Types

OpenDDL defines the 16 primitive data types listed in Table A.1, and they can be specified by the long
identifiers and short identifiers shown in Figure A.2. �ere is no difference in the meaning between the
long and short identifiers, so they can be used interchangeably. �e three floating-point data types each
have additional long and short identifiers, making it possible to specify those types with four different
identifiers that all have equivalent meanings.

When used as the identifier for a structure, each entry in the Table A.1 indicates that the structure is a
primitive structure and its data payload is composed of an array of literal values. Primitive structures
cannot have substructures.

Long Identifier Short Identifier Description

bool b Boolean type that can have the value true or false.

int8 i8 8-bit signed integer that can have values in the range [72− , 72 1−].

int16 i16 16-bit signed integer that can have values in the range [152− , 152 1−].

int32 i32 32-bit signed integer that can have values in the range [312− , 312 1−].

int64 i64 64-bit signed integer that can have values in the range [632− , 632 1−].

uint8 u8 An 8-bit unsigned integer that can have values in the range [0, 82 1−].

uint16 u16 16-bit unsigned integer that can have values in the range [0, 162 1−].

uint32 u32 32-bit unsigned integer that can have values in the range [0, 322 1−].

uint64 u64 64-bit unsigned integer that can have values in the range [0, 642 1−].

half, float16 h, f16 16-bit floating-point type in the standard S1-E5-M10 format.

float, float32 f, f32 32-bit floating-point type in the standard S1-E8-M23 format.

double, float64 d, f64 64-bit floating-point type in the standard S1-E11-M52 format.

string s Double-quoted character string with contents encoded in UTF-8.

ref r Sequence of structure names, or the keyword null.

type t Type whose values are identifiers naming the types in this table.

base64 z Generic binary data encoded as base64.

Table A.1. �ese are the 16 primitive data types defined by OpenDDL.

94 OpenGEX Specification

Figure A.2. �ese are the 16 primitive data types defined by OpenDDL.

�ere is no implicit type conversion in OpenDDL. Data belonging to a primitive structure must be
directly parsable as literal values corresponding to the structure’s data type.

�e type data type is convenient for schemas built upon OpenDDL itself in order to define valid type
usages in derivative file formats.

A.3.1 Booleans

A boolean value is one of the keywords false or true, as shown in Figure A.3. �e numerical values
0 and 1 may also be specified, and they are equivalent to false or true, respectively.

Figure A.3. A boolean value is one of the keywords false or true or one of the equivalent
numerical values 0 or 1.

OpenDDL Reference 95

A.3.2 Integers

Integers can be specified as a decimal number, a hexadecimal number, an octal number, a binary
number, or a single-quoted character literal.

Between any two consecutive digits of each type of integer literal, a single underscore character may
be inserted as a separator to enhance readability. �e presence of underscore characters and their
positions have no significance, and they do not affect the value of a literal.

A decimal literal is simply composed of a sequence of numerical digits, as shown in Figure A.4, and
leading zeros are permitted.

Figure A.4. A decimal literal is any sequence of numerical digits.

A hexadecimal literal is specified by prefixing a number with 0x or 0X, as shown in Figure A.5. �is is
followed, without any intervening whitespace, by any number of hexadecimal digits, shown in
Figure A.6, that don't cause the underlying integer type to overflow. �e letters A–F in a hexadecimal
literal are not case sensitive.

Figure A.5. A hexadecimal literal starts with 0x or 0X and continues with one or more
hexadecimal digits.

Figure A.6. A hexadecimal digit is a numerical digit 0–9 or a letter A–F (with no regard
for case).

An octal literal is specified by prefixing a number with 0o or 0O, as shown in Figure A.7. �is is
followed, without any intervening whitespace, by any number of digits between 0 and 7, inclusive, that
don't cause the underlying integer type to overflow.

96 OpenGEX Specification

Figure A.7. An octal literal starts with 0o or 0O and continues with one or more octal digits.

A binary literal is specified by prefixing a number with 0b or 0B, as shown in Figure A.8. �is is
followed, without any intervening whitespace, by any number of zeros and ones that don't cause the
underlying integer type to overflow.

Figure A.8. A binary literal starts with 0b or 0B and continues with one or more binary digits.

A character literal is specified by a sequence of printable ASCII characters enclosed in single quotes,
as shown in Figure A.9. OpenDDL supports the escape sequences listed in Table A.2 and illustrated in
Figure A.10. Escape sequences may be used to generate control characters or arbitrary byte values. �e
single quote (') and backslash (\) characters cannot be represented directly and must be encoded with
escape sequences. �e \x escape sequence is always followed by exactly two hexadecimal digits. Each
character (after resolving escape sequences) corresponds to exactly one byte in the resulting integer
value, and the right-most character corresponds to the least significant byte.

Figure A.9. A character literal is composed of a sequence of printable ASCII characters
enclosed in single quotes. �e single quote (') and backslash (\) characters cannot be
represented directly and must be encoded with escape sequences.

OpenDDL Reference 97

Escape Sequence ASCII Code Description

\" 0x22 Double quote

\' 0x27 Single quote

\? 0x3F Question mark

\\ 0x5C Backslash

\a 0x07 Bell

\b 0x08 Backspace

\f 0x0C Formfeed

\n 0x0A Newline

\r 0x0D Carriage return

\t 0x09 Horizontal tab

\v 0x0B Vertical tab

\xhh – Byte value specified by the two hex digits hh

Table A.2. �ese are the escape sequences supported by OpenDDL for character literals.

Figure A.10. An escape character consists of a backslash (\) followed by a single character
code. In the case of the \x character code, the escape sequence includes exactly two additional
hexadecimal digits.

98 OpenGEX Specification

An integer literal is composed of an optional plus or minus sign followed by a decimal, hexadecimal,
octal, binary, or character literal, as shown in Figure A.11.

[Example — In the following code, the same 32-bit unsigned integer value is repeated five times using
different literal types: a decimal literal, a hexadecimal literal, an octal literal, a binary literal, and a
character literal.

uint32
{
 1094861636,
 0x41424344,
 0o10120441504,
 0b0100_0001_0100_0010_0100_0011_0100_0100,
 'ABCD'
}

 — End example]

Figure A.11. An integer literal is composed of an optional sign followed by a decimal,
hexadecimal, octal, binary, or character literal.

A.3.3 Floating-Point Numbers

Floating-point numbers can be specified as a decimal number with or without a decimal point and
fraction, and with or without a trailing exponent, as shown in Figure A.12. Floating-point numbers may
also be specified as hexadecimal, octal, or binary literals representing the underlying bit pattern of the
number. �is is particularly useful for lossless exchange of floating-point data since round-off errors
possible in the conversion to and from a decimal representation are avoided. Using a hexadecimal,
octal, or binary representation is also the only way to specify a floating-point infinity or not-a-number
(NaN) value.

As with integer literals, an underscore character may be inserted between any two consecutive
numerical digits in a floating-point literal to enhance readability. Underscore characters are ignored and
do not affect the value of a literal.

OpenDDL Reference 99

Figure A.12. A floating-point literal is composed of an optional sign followed by a number with
or without a decimal point and an optional exponent. Hexadecimal, octal, and binary literals
representing the underlying bit pattern are also accepted.

A.3.4 Strings

Strings are composed of a sequence of characters enclosed in double quotes, as shown in Figure A.13.
Unicode values (encoded as UTF-8) in the following ranges may be directly included in a string literal:

• [U+0020, U+0021]

• [U+0023, U+005B]

• [U+005D, U+007E]

• [U+00A0, U+D7FF]

• [U+E000, U+FFFD]

• [U+010000, U+10FFFF]

�is is the only place where non-ASCII characters are allowed other than in comments.

A string may contain the escape sequences defined for character literals (see Figure A.10). �e double
quote (") and backslash (\) characters cannot be represented directly and must be encoded with escape
sequences. String literals also support the \u escape sequence, which specifies a nonzero Unicode
character using exactly four hexadecimal digits immediately following the u. In order to support
Unicode characters outside the Basic Multilingual Plane (BMP), a six-digit code can be specified by
using an uppercase U. �e \U escape sequence must be followed by exactly six hexadecimal digits that
specify a value in the range [0x000001, 0x10FFFF].

Multiple string literals may be placed adjacent to each other with or without intervening whitespace,
and this results in concatenation.

100 OpenGEX Specification

Figure A.13. A string literal is composed of a sequence of Unicode characters enclosed in
double quotes. �e double-quote ("), backslash (\), and non-printing control characters are
excluded from the set of characters that can be directly represented. A string may contain the
same escape characters as a character literal as well as additional Unicode escape sequences.
Adjacent strings are concatenated.

A.3.5 Base64 Data

Raw binary data can be expressed in the Base64 format. As shown in Figure A.14, Base64 data consists
of a sequence of characters composed from the set {A–Z, a–z, 0–9, +, /}. Each of the 64 characters in
the encoding set corresponds to the 6-bit value assigned to it in Table A.3.

Figure A.14. Base64 data is composed of uppercase and lowercase letters, numbers, the plus
symbol, and the slash symbol. �ere may be up to two equal signs for padding at the end.

�e number of encoded characters in a block of Base64 data must be 0, 2, or 3 modulo 4. Each group
of four characters corresponds to exactly three decoded bytes having values determined as follows.

• �e value of the first byte is given by the six bits encoded by the first character concatenated with the
two most significant bits encoded by the second character.

• �e value of the second byte is given by the four least significant bits encoded by the second character
concatenated with the four most significant bits encoded by the third character.

• �e value of the third byte is given by the two least significant bits encoded by the third character
concatenated with the six bits encoded by the fourth character.

OpenDDL Reference 101

Char Value Char Value Char Value Char Value

A 0 Q 16 g 32 w 48

B 1 R 17 h 33 x 49

C 2 S 18 i 34 y 50

D 3 T 19 j 35 z 51

E 4 U 20 k 36 0 52

F 5 V 21 l 37 1 53

G 6 W 22 m 38 2 54

H 7 X 23 n 39 3 55

I 8 Y 24 o 40 4 56

J 9 Z 25 p 41 5 57

K 10 a 26 q 42 6 58

L 11 b 27 r 43 7 59

M 12 c 28 s 44 8 60

N 13 d 29 t 45 9 61

O 14 e 30 u 46 + 62

P 15 f 31 v 47 / 63

Table A.3. �ese are the 64 character values used in Base64 data.

If the number of encoded characters is 2 modulo 4, then the final two characters produce a single byte
of decoded data, and the four least significant bits encoded by the second character are discarded. In
this case, the encoded Base64 data may end with two equals sign characters as padding to make the
total number of encoded characters a multiple of four. �is padding is not required, and it is ignored if
it is present.

If the number of encoded characters is 3 modulo 4, then the final three characters produce two bytes of
decoded data, and the two least significant bits encoded by the third character are discarded. In this
case, the encoded Base64 data may end with one equals sign character as padding to make the total
number of encoded characters a multiple of four. �is padding is not required, and it is ignored if it is
present.

Whitespace may appear anywhere inside Base64 data, and it is ignored. Because the forward slash
character has a specific meaning in the Base64 format, comments are not permitted to occur inside
Base64 data.

102 OpenGEX Specification

A.4 Identifiers
An identifier is a sequence of characters composed from the set {A–Z, a–z, 0–9, _}, as shown in
Figure A.15. �at is, an identifier is composed of uppercase and lowercase roman letters, the numbers
0 through 9, and the underscore. An identifier cannot begin with a number.

Identifiers are used to specify structure types, names, properties, and data states. �e identifiers used
for the 16 primitive data types listed in Table A.1 are reserved as structure types, but they can still be
used as names, properties, and data states.

All identifiers consisting of a single lowercase letter followed by zero or more numerical digits are
reserved as structure types for future use by the language. A derivative format may define any other
identifier as the type of a derived structure.

Figure A.15. An identifier is composed of uppercase and lowercase roman letters, the numbers
0 through 9, and the underscore.

OpenDDL Reference 103

A.5 Names

Any structure may have a name. Names are used to identify specific structures so they can be referenced
from within primitive structures or through property values. A name can be a global name or a local
name. Each global name must be unique among all global names used inside the file containing it, and
each local name must be unique among all local names used by its siblings in the structure tree. Local
names can be reused inside different structures, and they can duplicate global names.

As shown in Figure A.16, a name is composed of either a dollar sign character ($) or percent sign
character (%) followed by an identifier with no intervening whitespace. A name that begins with a dollar
sign is a global name, and a name that begins with a percent sign is a local name. A name is assigned
to a structure by placing it immediately after the structure identifier (and no whitespace is technically
required before the dollar sign). [Example —

Vertex $apex
{
 float {1.0, 2.0, 3.0}
}

�e Vertex structure has the global name $apex. �is structure can be referenced from elsewhere in
the file by using the name $apex as a value of the ref type. — End example]

Figure A.16. A name is composed of either a dollar sign character ($) or a percent sign character
(%) followed by an identifier with no intervening whitespace.

104 OpenGEX Specification

A.6 References

A reference is a value that forms a link to a specific structure within an OpenDDL file. If the target
structure has a global name, then the value of a reference to it is simply the name of the structure,
beginning with the dollar sign character. If the target structure has a local name, then the value of a
reference to it depends on the scope in which the reference appears. If the reference appears inside a
structure that is a sibling of the target structure, then its value is the name of the target structure,
beginning with the percent sign character. Otherwise, the value of the reference consists of a sequence
of names, as shown in Figure A.17, that identify a sequence of structures along a branch in a tree of
structures. Only the first name in the sequence can be a global name, and the rest must be local names.

�e value of a reference can also be keyword null to indicate that a reference has no target structure.

[Example — In the following code, the structure types Person, Name, and Friends are defined by a
derivative format. References are used to link people to the data structures representing their friends.

Person $charles
{
 Name {string {"Charles"}}
 Friends {ref {$alice, $bob}}
}

Person $alice {...}
Person $bob {...}

 — End example]

Figure A.17. A reference is either the name of a structure or the keyword null. A structure may
be identified by a sequence of names providing the path to the target along a branch in a tree of
structures.

OpenDDL Reference 105

A.7 Primitive Data

Primitive structures contain homogeneous data of a single primitive data type in one of three possible
forms.

A.7.1 Flat Data

�e data contained in a primitive structure may consist of a flat, comma-separated list individual literal
values, as shown in Figure A.18. �e size of the list is unbounded. In this case, the structure identifier
is not followed by brackets, but only an optional name and the data itself enclosed in braces.

Figure A.18. �e data payload of a primitive structure may be a homogeneous list of literal
values separated by commas.

Note that an implementation would use its knowledge of the primitive structure’s data type to choose
only a single rule in Figure A.18, as opposed to allowing any of the types of data to appear inside the
braces. (It is also not possible to disambiguate among the numerical data types without some extra
information.)

A.7.2 Subarray Data

�e data contained in a primitive structure may also be specified as a comma-separated list of subarrays
of literal values, as shown in Figure A.19. �e size of the subarrays is specified by placing a positive

106 OpenGEX Specification

integer value inside brackets immediately following the structure identifier, preceding the structure’s
optional name. �e data belonging to each subarray is then specified as a comma-separated list of values
enclosed in braces. In this case, the identifiers shown in Figure A.19 do not apply and may not appear
in the structure’s data.

As before, an implementation would choose only a single rule in Figure A.19 based on the type of the
primitive structure.

Figure A.19. A data payload may consist of a list of subarrays separated by commas. Each
subarray contains a homogeneous array of values enclosed in braces.

�e number of elements in each subarray must always match the array size specified inside the brackets
following the primitive type identifier. If the array size is one, then the braces are still required. While
the size of the subarrays is fixed, the total number of subarrays is unbounded.

[Example — Suppose that a VertexArray structure expects to contain an array of 3D positions, each
of which is specified as an array of three floating-point values. �is would be written as follows.

OpenDDL Reference 107

VertexArray
{
 float[3]
 {
 {1.0, 2.0, 3.0}, {0.5, 0.0, 0.5}, {0.0, −1.0, 4.0}
 }
}

 — End example]

A.7.3 Data States

Primitive structures containing subarrays may also specify data states that associate a particular state
with each subarray. �e meaning of data states are defined by a derivative format. �e presence of data
states is indicated by writing an asterisk (*) immediately after the subarray size enclosed in brackets.
In this case, a state identifier may precede any subarray in the data payload. If a state identifier is omitted
for any particular subarray, then the state associated with the preceding subarray continues to apply.
�e initial state is defined by the derivative format.

[Example — �e following Path structure provides an example in which data states are used to specify
how individual points in a list are to be interpreted. In this example, the state M causes the drawing
position to be moved to the associated point, the state L causes a line to be drawn to the associated
point, and the state C causes a cubic Bézier curve to be drawn using the preceding point and the
following three points.

Path
{
 float[2]*
 {
 M{1.0, 1.0}, L{2.0, 1.0}, C{3.0, 1.0}, {3.0, 2.0}, {2.0, 3.0}
 }
}

 — End example]

108 OpenGEX Specification

A.8 Properties

A derived structure may accept one or more properties that can be specified separately from the data
contained inside the structure. Properties are written in a comma-separated list inside parentheses
following the name of the structure, or just following the structure identifier if there is no name. As
shown in Figure A.20, each property is composed of a property identifier followed by an equals sign
character (=) and the literal value of the property. �e type of the property’s value must be specified by
some external source of information such as a schema or the implementation of the derivative format.
For example, a string cannot be specified for a property that was expecting an integer. �e specified
type determines which subrule in Figure A.20 is applied, and a mismatch must be detected at the time
that the property is parsed.

Figure A.20. A property is composed of an identifier followed by an equals character (=) and
the value of the property.

[Example — Suppose that a data structure called Mesh accepts a property called lod that takes an
integer representing the level of detail to which it pertains. �is property would be specified as follows.

Mesh (lod = 2)
{
 ...
}

If another property called part existed and accepted a string (perhaps to identify a body part), then that
property could be added to the list as follows.

Mesh (lod = 2, part = "Left Hand")
{
 ...
}

 — End example]

OpenDDL Reference 109

�e order in which properties are listed is not significant. Derivative formats may require that certain
properties always be specified. Optional properties must always have a default value or be specially
handled as being in an unspecified state. �e same property can be specified more than once in the same
property list, and in such a case, all but the final value specified for the same property must be ignored.

Boolean properties allow a special syntax in which the assignment of a value of true or false can be
omitted. In this case, the presence of the property implies that its value is true. �is is a useful shorthand
notation for Boolean properties having a default value of false. Properties having any other type must
include an assigned value.

A structure is allowed to have properties that are not recognized by the implementation of a derivative
format in order to support extensions. Unrecognized properties must be ignored and must not generate
an error. However, the value assigned to such a property must still be parsable as one of the primitive
data types.

�e syntax does not allow primitive structures to have a property list.

110 OpenGEX Specification

A.9 Comments and Whitespace

�e language supports C++-style block comments and single-line comments as follows:

• Any occurrence of /* begins a comment that ends immediately after the next occurrence of */. Such
comments do not nest.

• Any occurrence of // begins a comment that ends immediately after the next newline character.

If any sequence /*, */, or // appears inside a character literal or string literal, then it is part of the
literal value and not treated as a comment.

Comments may include any Unicode characters encoded as UTF-8. �e only other place where non-
ASCII characters are allowed is inside a string literal (see Section A.3.4).

Comments cannot occur inside base64 data (see Section A.3.5).

All characters having a value in the range [1, 32] (which includes the space, tab, newline, and carriage
return characters), as well as all characters belonging to comments, are considered to be whitespace in
OpenDDL. Any arbitrarily long contiguous sequence of whitespace characters is equivalent to a single
space character.

OpenDDL Reference 111

A.10 Formal Grammar

For reference, the formal grammar defining the OpenDDL syntax using Backus-Naur Form and regular
expressions is shown in Listing A.1. �e figures displayed throughout this specification precisely
correspond to this grammar. A syntactically valid OpenDDL file satisfies the file rule at the end of the
listing.

Listing A.1. �is is the formal grammar defining the OpenDDL syntax.

identifier ::= [A-Za-z_] [0-9A-Za-z_]*

name ::= ("$" | "%") identifier

reference ::= name ("%" identifier)* | "null"

hex-digit ::= [0-9A-Fa-f]

escape-char ::= '\"' | "\'" | "\?" | "\\" | "\a" | "\b" | "\f"
 | "\n" | "\r" | "\t" | "\v"
 | "\x" hex-digit hex-digit

bool-literal ::= "false" | "0" | "true" | "1"

decimal-literal ::= [0-9] ("_"? [0-9])*

hex-literal ::= ("0x" | "0X") hex-digit ("_"? hex-digit)*

octal-literal ::= ("0o" | "0O") [0-7] ("_"? [0-7])*

binary-literal ::= ("0b" | "0B") ("0" | "1") ("_"? ("0" | "1"))*

char-literal ::= "'" ([#x20-#x26#x28-#x5B#x5D-#x7E]
 | escape-char)+ "'"

integer-literal ::= ("+" | "-")? (decimal-literal | hex-literal
 | octal-literal | binary-literal | char-literal)

float-literal ::= ("+" | "-")?
 (([0-9] ("_"? [0-9])* ("." ([0-9] ("_"? [0-9])*)?)?
 | "." [0-9] ("_"? [0-9])*)
 (("e" | "E") ("+" | "-")? [0-9] ("_"? [0-9])*)?
 | hex-literal | octal-literal | binary-literal)

string-literal ::= ('"' ([#x20-#x21#x23-#x5B#x5D-#x7E#xA0-#xD7FF#xE000-
 #xFFFD#x010000-#x10FFFF] | escape-char
 | "\u" hex-digit hex-digit hex-digit hex-digit

112 OpenGEX Specification

 | "\U" hex-digit hex-digit hex-digit hex-digit
 hex-digit hex-digit)* '"')+

data-type ::= "bool" | "b" | "int8" | "i8" | "int16" | "i16"
 | "int32" | "i32" | "int64" | "i64" | "uint8" | "u8"
 | "uint16" | "u16" | "uint32" | "u32" | "uint64" | "u64"
 | "half" | "h" | "float" | "f" | "double" | "d" | "float16"
 | "f16" | "float32" | "f32" | "float64" | "f64" | "string"
 | "s" | "ref" | "r" | "type" | "t" | "base64" | "z"

base64-data ::= [A-Za-z0-9]* "="? "="?

data-list ::= bool-literal ("," bool-literal)*
 | integer-literal ("," integer-literal)*
 | float-literal ("," float-literal)*
 | string-literal ("," string-literal)*
 | reference ("," reference)*
 | data-type ("," data-type)*
 | base64-data ("," base64-data)*

data-array-list ::= identifier? "{" bool-literal (","
 bool-literal)* "}" ("," identifier? "{"
 bool-literal ("," bool-literal)* "}")*
 | identifier? "{" integer-literal (","
 integer-literal)* "}" ("," identifier? "{"
 integer-literal ("," integer-literal)* "}")*
 | identifier? "{" float-literal (","
 float-literal)* "}" ("," identifier? "{"
 float-literal ("," float-literal)* "}")*
 | identifier? "{" string-literal (","
 string-literal)* "}" ("," identifier? "{"
 string-literal ("," string-literal)* "}")*
 | identifier? "{" reference (","
 reference)* "}" ("," identifier? "{"
 reference ("," reference)* "}")*
 | identifier? "{" data-type (","
 data-type)* "}" ("," identifier? "{"
 data-type ("," data-type)* "}")*
 | identifier? "{" base64-data (","
 base64-data)* "}" ("," identifier? "{"
 base64-data ("," base64-data)* "}")*

property ::= identifier ("=" (bool-literal | integer-literal
 | float-literal | string-literal | reference
 | data-type | base64-data))?

structure ::= data-type (name? "{" data-list? "}"
 | "[" integer-literal "]" "*"? name?

OpenDDL Reference 113

 "{" data-array-list? "}")
 | identifier name? ("(" (property ("," property)*)?
 ")")? "{" structure* "}"

file ::= structure*

 115

B
Revision History

�is appendix lists the changes that have been made to the OpenGEX format since the original
specification of version 1.0.

Version 3.0
�e following changes were made in OpenGEX version 3.0.

• �e Open Data Description Language was updated to version 3.0.

• �e "red", "green", "blue", and "white" keys were added to the Metric structure to specify the
chromaticity coordinates of the red, green, and blue primary colors and the white point of the color
space used by an OpenGEX file.

• �e Spectrum structure was added. �is can appear anywhere that a Color structure can appear.

• Many new attribute types were added to the Color, Param, Spectrum, and Texture substructures
that can appear inside a Material structure.

• �e swizzle, x_address, y_address, z_address, and border properties were added to the
Texture structure.

• �e Transform structure now accepts matrix data having 16, 12, 9, 6, or 4 entries.

• �e Extension structure was removed because it is no longer necessary under OpenDDL 3.0.

Version 2.0
�e following changes were made in OpenGEX version 2.0.

• �e Open Data Description Language was updated to version 2.0.

• �e "forward" key was added to the Metric structure to specify the forward direction for models
such as characters and vehicles.

116 OpenGEX Specification

• �e exact calculations necessary for converting between y and z up directions was added to the
specification for the Metric structure.

• �e "fovx" and "fovy" parameters were added to the CameraObject structure.

Version 1.1
�e following changes were made in OpenGEX version 1.1.

• �e Extension structure was added. �is can appear anywhere in an OpenGEX file as a container
for application-specific data.

• �e Clip structure was added. �is is used to store information that applies to an animation clip as a
whole, and it appears at the top level of an OpenGEX file.

• It is no longer a requirement that multiple Animation structures belonging to the same parent
structure have unique values for their clip properties.

• �e curve property of the Value structure now accepts "constant" to indicate that the value remains
constant until the next time key.

• As a substructure of the Material structure, the attrib property of the Texture structure now
accepts "specular_power" to indicate that the texture modulates the specular power.

• �e data contained inside a VertexArray structure may now use any floating-point type, whereas
only 32-bit floating-point values were previously accepted.

• �e MorphWeight structure was added. �is can appear inside a GeometryNode structure to specify
the weight of a single morph target, and it can be the target of an animation track.

• �e purpose of the Morph structure has been changed. �is is now used to store information that
applies to a morph target as a whole, and it can appear inside a GeometryObject structure.

	Contents
	Introduction
	Structure Specification
	Animation
	Atten
	BoneCountArray
	BoneIndexArray
	BoneNode
	BoneRefArray
	BoneWeightArray
	CameraNode
	CameraObject
	Clip
	Color
	GeometryNode
	GeometryObject
	IndexArray
	Key
	LightNode
	LightObject
	Material
	MaterialRef
	Mesh
	Metric
	Morph
	MorphWeight
	Name
	Node
	ObjectRef
	Param
	Rotation
	Scale
	Skeleton
	Skin
	Spectrum
	Texture
	Time
	Track
	Transform
	Translation
	Value
	VertexArray

	OpenDDL Reference
	Revision History

